GUIDE DE PRECONISATIONS
pour augmenter
et mesurer
les performances tribologiques

Mathilde TAFFOREAU - Gregory BARRAT
Promo 2015
Houssam BELLA - Oscar MANCEAU
Promo 2016
Muriel QUILLIEN – François ROBBE-VALLOIRE
Encadrants

2017
AVANT PROPOS

La profession des fixations s’est très vite intégrée au sein de la commission technique d’ARTEMA en apportant un éclairage complémentaire à l’appréhension industrielle du frottement.

Réduire les pertes par frottement n’est plus le seul problème à résoudre, il faut aussi savoir comment augmenter les efforts de frottement pour solidariser davantage les pièces mécaniques entre-elles, tout en envisageant la possibilité de les démonter si nécessaire...

Face à ce dilemme, il devenait impératif de revoir l’objectif du 1er guide (quelle préconisation pour réduire le frottement ?) pour aborder, dans ce second guide, le contact mécanique avec un objectif plus large : la performance tribologique ou, plus exactement, les performances tribologiques.

Ce guide suit une démarche pragmatique qui privilégie la réponse rapide face à l’objectif défini par les équipes de bureau d’études. Par exemple, si l’objectif est d’augmenter la durée de vie en réduisant l’usure caractérisée par l’émission de débris, le lecteur pourra se rendre directement au chapitre concerné pour identifier plus précisément le phénomène physique élémentaire qu’il lui faut considérer et ainsi agir sur les paramètres influents (e.g. dureté, longueur parcourue par le contact, pression moyenne de contact). Une étape choix des matériaux, conditions de lubrification est ensuite proposée jusqu’à la mise en œuvre de tribomètres. L’intérêt d’utiliser des tribomètres est de permettre de valider des solutions avant d’engager des budgets plus conséquents de reconception de produit.

Ce guide est le fruit d’un travail de coopération remarquable entre les industriels d’ARTEMA et les étudiants et professeurs de SUPMECA.

Pierre Laguionie
Président de la Commission Technique Artema
Sommaire

Introduction .. 5

1 **Étape 1 : Identification du phénomène à optimiser** ... 7
 1.1 Description de cette étape et motivation ... 7
 1.2 Aide à l’étape de choix du phénomène à optimiser .. 8

2 **Étape 2 : Présentation des différents phénomènes observables** .. 10
 2.1 Démarche de cette étape de présentation du phénomène .. 10
 2.2 Action mécanique de frottement .. 10
 2.2.1 Synoptique d’optimisation de la force de frottement ... 11
 2.2.2 Les 2 types de frottement .. 11
 2.2.3 Les 2 composantes du frottement ... 13
 2.2.4 La variabilité du frottement dynamique et sa dispersion usuelle 13
 2.2.5 Les principaux types de configuration pour les guidages .. 15
 2.3 L’usure .. 17
 2.3.1 Synoptique d’optimisation de l’usure ... 17
 2.3.2 Usure en présence d’une situation de glissement .. 18
 2.3.3 Usure induite par une cinématique de type roulement .. 26
 2.3.4 Usure induite en absence de mouvement apparent .. 30
 2.4 Les transformations de surface ... 34
 2.4.1 Synoptique d’action sur les transformations superficielles ... 34
 2.4.2 Changement de microgéométrie ... 35
 2.4.3 Evolution physicochimique des matériaux en surface .. 37
 2.4.4 Contraintes résiduelles ... 38
 2.5 Les phénomènes thermiques .. 39
 2.5.1 Synoptique d’optimisation des phénomènes thermiques dans le contact 39
 2.5.2 Puissance dissipée dans le contact .. 39
 2.5.3 Puissance dissipée par unité de surface ... 40
 2.5.4 Echauffement du contact .. 40
 2.5.5 Règles empiriques sur les limites de densité de puissance ... 42
 2.6 Les vibrations et le bruit généré par le contact .. 44
 2.6.1 Synoptique d’optimisation des vibrations de frottement .. 45
 2.6.2 Bruit de rugosité .. 45
 2.6.3 Le glissement saccadé (Stick-Slip) ... 46
 2.6.4 Arc-boutement (Sprag-Slip) .. 47
 2.6.5 Le couplage modal (Modal coupling) .. 48

3 **Étape 3 : La recherche de solutions via les matériaux** ... 50
 3.1 La lubrification ... 50
 3.1.1 Synoptique d’optimisation de la lubrification ... 50
 3.1.2 Les différents types de lubrifiants .. 52
 3.1.3 La mise en œuvre des lubrifiants ... 56
3.2 Recherche de solutions matériaux contre le grippage et l’usure adhésive ..62
 3.2.1 Synoptique de résolution du problème de grippage et d’optimisation de l’usure adhésive..........63
 3.2.2 Les différents types de solutions matériaux sur le grippage ..64
 3.2.3 La mise en œuvre de solutions antigrippage : Les revêtements métalliques65
3.3 Les solutions matériaux sur l’abrasion ...66
 3.3.1 Synoptique d’optimisation de l’usure abrasive ..66
 3.3.2 Les différentes solutions pour optimiser l’usure par abrasion ..67
 3.3.3 La mise en œuvre des solutions anti abrasion : les traitements de diffusion67
3.4 Recherche de solution matériaux contre l’usure par fissuration...68
 3.4.1 Synoptique d’optimisation de l’usure par fissuration ...68
 3.4.2 Les différentes solutions pour optimiser l’usure par fissuration ..69
 3.4.3 Mise en œuvre des traitements mécaniques de surface ...70
4 Etape 4 : Validation des performances tribologiques ...71
 4.1 Méthodes expérimentales pour reproduire le fonctionnement du contact71
 4.2 Mesure du coefficient de frottement ...73
 4.3 Mesure de la perte de volume ...75
 4.4 Mesure des températures ...76
5 Références ...77
Glossaire

<table>
<thead>
<tr>
<th>Sigle</th>
<th>Définition</th>
<th>Unité</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Effort normal</td>
<td>N</td>
</tr>
<tr>
<td>f_s</td>
<td>Coefficient de frottement statique</td>
<td>-</td>
</tr>
<tr>
<td>f</td>
<td>Coefficient de frottement dynamique</td>
<td>-</td>
</tr>
<tr>
<td>T</td>
<td>Effort de frottement</td>
<td>N</td>
</tr>
<tr>
<td>t_c</td>
<td>Temps de contact en position immobile</td>
<td>s</td>
</tr>
<tr>
<td>p</td>
<td>Pression moyenne de contact</td>
<td>Pa</td>
</tr>
<tr>
<td>k</td>
<td>Coefficient d’usure</td>
<td>mm3/Nm</td>
</tr>
<tr>
<td>L</td>
<td>Longueur parcourue en glissement</td>
<td>m</td>
</tr>
<tr>
<td>Nb Cycles</td>
<td>Nombre de cycles de chargement subis par un contact travaillant en fatigue</td>
<td>-</td>
</tr>
<tr>
<td>Volu usé</td>
<td>Volume de matière usé sur une des pièces en contact</td>
<td>mm3</td>
</tr>
<tr>
<td>t</td>
<td>Temps de contact en situation de glissement</td>
<td>s</td>
</tr>
<tr>
<td>v</td>
<td>Vitesse de glissement</td>
<td>m/s</td>
</tr>
<tr>
<td>ω</td>
<td>Rotation de l’arbre</td>
<td>Rd/s</td>
</tr>
<tr>
<td>W</td>
<td>Puissance dissipée</td>
<td>W</td>
</tr>
<tr>
<td>W_s</td>
<td>Puissance dissipée par unité de surface</td>
<td>W/m2</td>
</tr>
<tr>
<td>η</td>
<td>Viscosité dynamique</td>
<td>Pa.s</td>
</tr>
</tbody>
</table>
Introduction

Ce guide s'adresse aux industriels. Il est le résultat d'une collaboration entre ARTEMA et SUPMECA [1,2].

Il a pour but de répondre aux besoins des bureaux d'études lors des choix destinés à améliorer les performances tribologiques de leur contact.

Le guide définit une méthode en quatre étapes.

- La première étape est la définition du besoin par le bureau d'études c'est-à-dire l'identification du phénomène observable lié au contact entre deux éléments. Cette identification est celle de l'industriel qui fait un choix en termes d'augmentation ou de réduction. Par exemple, réduire l'usure, augmenter le frottement....
- La deuxième étape permet de mieux comprendre les phénomènes observables. Chaque phénomène est décortiqué en phénomènes élémentaires. Ces derniers phénomènes sont explicités par des photos, des remarques pragmatiques et ensuite synthétisés sous forme de synoptiques de choix. L'expert de bureau d'études pourra alors, avec l'outil/guide, identifier les paramètres principaux qui agissent sur le phénomène observable de l'étape 1. Des remédiations sont proposées. Si elles ne s'avèrent pas suffisantes, l'étape 3 est requise.
- La troisième étape propose d'agir sur les matériaux, les conditions de lubrification afin d'atteindre l'objectif de l'étape 1. Cette étape n'est nécessaire que si l'étape 2 n'apporte pas de solutions suffisantes.
- Enfin, la quatrième étape vise à utiliser des tribomètres capables de valider les solutions retenues.

Utilisation du guide :

Le guide fait apparaître à chaque étape des synoptiques qui guident l'utilisateur dans la démarche d'identification de solutions. Ils comportent des questions (sous forme d'hexagone) avec en dessous les différentes options de réponse (toujours sous forme de rectangle). Les paramètres influants apparaissent dans des parallélogrammes, et enfin, le passage à une étape suivante est formalisé par un rectangle arrondi (voir Figure 1).

Sur la version WORD, les éléments en bleu sont des liens hypertextes qui permettent en se positionnant dessus avec un CTRL + clic d'accéder directement à l'information concernée. La version papier indique, dans les questions (ou dans les réponses), le paragraphe ou la page à laquelle il faudra se déplacer pour obtenir des informations complémentaires (ou opérer la suite de l'analyse).
Figure 1 : Exemple de synoptique
1 Etape 1 : Identification du phénomène à optimiser

1.1 Description de cette étape et motivation

La performance tribologique d’un contact peut faire référence à des domaines physiques très variés [3] parmi lesquels on peut citer : les forces de frottement, les usures des pièces, les changements se produisant à la surface des pièces (déformation, aspect, rugosité), l’échauffement généré par le contact et enfin les vibrations émises en cours de fonctionnement.

Ce diagramme « cause à effets » (ou en « arêtes de poisson ») en Figure 2 montre que ces 5 caractéristiques de performance possibles vont pouvoir être affectées par les mêmes familles de données (au nombre de 6, indiquées à gauche sur le diagramme).

![Figure 2 : Relation de causes à effets](image)

L’effet de chacun des paramètres va pouvoir varier considérablement suivant le phénomène considéré. Il est donc indispensable d’identifier un phénomène prédominant dès l’amorce de la démarche afin de personnaliser l’optimisation [4 à 7]. L’objectif essentiel de cette première étape est de bien identifier la performance essentielle à optimiser afin de passer à l’étape suivante de la démarche en suivant le cheminement proposé en Figure 3.
1.2 Aide à l’étape de choix du phénomène à optimiser

Les principaux phénomènes observables dans un contact sont les suivants :

- Les forces de frottement/rendement : on pourra choisir ce phénomène lorsque la problématique concernera des notions liées directement à la force ou au couple de frottement dans un contact. A titre d'exemple, les mots clefs liés à ce phénomène observable sont : rendement de guidage, frettage d’assemblage, adhérence, freinage.…
- L’usure volumique : d’une manière générale le phénomène d’usure est lié à toute variation dimensionnelle de la pièce lors du fonctionnement et se raccroche donc aux problématiques de durée de vie, de grippage, de débris d’usure.
- Les transformations de surface/déformation géométrique et mécanismes d’altération physico-chimique des matériaux : dans cette rubrique, connexe à la rubrique usure, on focalisera l’attention sur les évolutions localisées à la surface du contact. Les plus classiques sont les variations microgéométriques (changement de rugosité des pièces lors du fonctionnement ou changement de volume lié à des transformations structurales) et l’évolution de la composition des matériaux en surface par effet d’attrition lors d’un glissement relatif.
- L’échauffement par puissance dissipée regroupe l’ensemble des analyses impliquant des aspects thermiques du contact (échauffement des pièces, transformations allotropiques des matériaux en proche surface, dissipation de l’énergie thermique)
• Les vibrations et bruits regroupent l’ensemble des situations pour lesquelles l’aspect dynamique est impliqué. Ainsi le crissement de contact, le glissement saccadé sont les situations les plus classiques d’instabilité de frottement.

A titre d’exemple, si on considère le contact entre disque de frein et plaquette (illustrations de la Figure 3) :

• Si la problématique est de raccourcir la distance de freinage alors la force de frottement est à modifier, il faut sélectionner la rubrique force de frottement.
• Si la problématique vise à modifier la durée de vie des plaquettes et/ou du disque, alors ce sont les notions d’usure qui seront privilégiées.
• Si l’échauffement en fonctionnement est à limiter, le problème est thermique, il faut suivre le cheminement échauffement.
• Si la nuisance à combattre est l’émission de vibration en phase de glissement alors sélectionner la rubrique bruit et émission.
• Enfin la rubrique dégradation de surface fait référence à des problématiques visant à modifier les changements d’aspects (couleur ou déformation).
2 Etape 2 : Présentation des différents phénomènes observables

2.1 Démarche de cette étape de présentation du phénomène

A ce stade, le lecteur aura sélectionné le phénomène qu’il cherche à optimiser. En fonction du phénomène choisi, il est nécessaire de se rendre dans les paragraphes suivants pour trouver une présentation scientifique des physiques à la base du phénomène à optimiser :

- 2.2 pour la force de frottement et le rendement,
- 2.3 pour l’usure volumique et l’émission de débris,
- 2.4 pour les déformations géométriques et les mécanismes d’altérations physico-chimiques des matériaux,
- 2.5 pour l’échauffement et la puissance dissipée,
- 2.6 pour les vibrations et les bruits émis par le contact.

Chacun de ces paragraphes présente une description physique du phénomène considéré avec pour objectif principal de surligner les paramètres principaux qui vont agir le plus directement possible sur le phénomène considéré.

2.2 Action mécanique de frottement

L’objectif de ce paragraphe est de donner une description scientifique du frottement et de proposer les premières pistes « simples » pour optimiser ce phénomène de contact.
2.2.1 Synoptique d’optimisation de la force de frottement

Figure 4 : Synoptique d’optimisation du frottement

2.2.2 Les 2 types de frottement

Le frottement est un phénomène complexe qui n’est pas dû à une interaction élémentaire, mais résulte de causes diverses, principalement des forces électromagnétiques et de l’interaction entre les atomes des surfaces en contact [5]. Ces mêmes forces sont également en jeu dans l’adhérence qui, s’opposant à la création d’un mouvement, peut, pour cette raison, être étudiée conjointement.

Le frottement se décompose en deux situations :

- **Contact statique** : Lorsque le contact est statique (sans mouvement relatif entre les pièces), une force tangentielle T peut exister dans le contact (Figure 5 (a)). Sa direction est quelconque et son intensité T est inférieure à la force de frottement Tₛ. On définit Tₛ = fₛN, avec fₛ le coefficient de frottement statique, ratio entre la force tangentielle Tₛ nécessaire pour initier le mouvement relatif et l’effort normal N appliqué sur la surface de contact (Figure 5 (b)). On indique généralement que la résultante se trouve dans le cône de frottement statique.

- **Frottement dynamique** : Lorsqu’un mouvement relatif existe entre les 2 pièces, la force de frottement T tend à ralentir le mouvement. En conséquence, elle est orientée dans la direction
du mouvement relatif entre les 2 pièces et s’oppose au mouvement (Figure 5 (c)). Sa valeur est donnée par la formule $T = f N$, dans laquelle f est le coefficient de frottement dynamique défini comme le ratio entre la force tangentielle nécessaire pour maintenir le mouvement relatif et la force normale appliquée sur la surface de contact.

![Cône de frottement statique - Frottement statique limite - Cône de frottement dynamique](image)

Figure 5 : Frottement statique (a), statique limite (b) et frottement dynamique (c)

De manière pratique, le frottement statique sera considéré pour des pièces en contact qui doivent résister au glissement (assemblage, embrayage) et le frottement dynamique concerne plus particulièrement les contacts glissants en (quasi) permanence. En première approche, frottement statique et frottement dynamique, sont généralement voisins avec un coefficient de frottement statique légèrement supérieur au coefficient de frottement dynamique.

Cette différence provient principalement du temps de contact car on peut montrer que le frottement lors du premier glissement est directement influencé (Figure 6) par le temps pendant lequel les pièces ont été maintenues en contact (sans mouvement relatif entre les 2). Lors du glissement, ce temps de contact est maintenu au minimum et tend vers zéro lorsque la vitesse augmente. À basse vitesse, le temps de contact augmente et l’augmentation de frottement statique peut engendrer le phénomène de glissement saccadé (paragraphe 2.6.3).

![Influence du temps de contact sur le coefficient de frottement statique](image)

Figure 6 : Influence du temps de contact sur le coefficient de frottement statique

N.B. : Hormis les aspects indiqués ci-avant sur le frottement statique, le guide dans sa version actuelle va porter exclusivement sur le frottement dynamique.
2.2.3 Les 2 composantes du frottement

Comme les pièces ne sont pas indéformables, et idéalement lisses, il peut se présenter dans le contact des (micros) situations d’obstacles induites soit par les extrémités des pièces, voire le micro relief, présents sur chaque pièce technique (rugosité cf paragraphe 2.4.2).

![Figure 7 : Schéma de micro-situations d’obstacles](image)

Le frottement apparent sur le contact est l’association de plusieurs termes : un terme de glissement voisin dans l’esprit de ce qui existerait sur les pièces lisses non déformables et une contribution de déformation qui sera d’autant plus importante que les déformations sont introduites dans le contact. Cette composante due aux déformations augmente le frottement apparent et il conviendra de veiller à le réduire au maximum lorsque l’on cherche à minimiser le frottement. Des propositions concrètes se trouvent en paragraphe 3.2.3. Inversement, il constitue un moyen intéressant pour augmenter le frottement en favorisant par exemple un effet d’ancrage dans le contact (cas des rondelles freins par exemple).

2.2.4 La variabilité du frottement dynamique et sa dispersion usuelle

Au cours du fonctionnement le coefficient va présenter une variabilité naturelle matérialisée par des variations sur 2 échelles de temps bien différentes : une variabilité à l’échelle de la durée de fonctionnement (Figure 8), et une variabilité sur un intervalle de temps court (quelques secondes ou moins, Figure 9).
Variabilité à l'échelle de la durée du fonctionnement

On distingue, lors du démarrage, un passage rapide du niveau de frottement se rapprochant du frottement statique au frottement dynamique qui peut être significativement plus faible. Ensuite, l’établissement du glissement se fait avec un frottement dynamique qui va évoluer rapidement pendant les premières phases du fonctionnement conformément à la phase de rodage qui permet une adaptation des surfaces puis progressivement converger vers un niveau correspondant au frottement stabilisé caractéristique d’une adaptation complète des 2 surfaces antagonistes. En fin de vie du contact, le coefficient de frottement peut diverger.

Variabilité à courte échelle

Une mesure du frottement d’un contact sur un tribomètre (cf Etape 4 : Validation des performances tribologiques, paragraphe 4.2 : Validation des choix sur tribomètre) montre une dispersion non négligeable (variation relative usuelle de l’ordre de 10% autour de la valeur moyenne). Cette variation de la force de frottement (Figure 9) est attribuée à la seule variation du coefficient de frottement, la stabilité de l’effort normal étant assurée par l’utilisation de masses marquées.

Figure 8 : Variabilité du coefficient de frottement à l’échelle de la durée de fonctionnement

Figure 9 : Exemple de mesures de frottement avec leurs dispersions respectives
L’existence de cette dispersion a une conséquence immédiate sur les étapes de dimensionnement. Ainsi par exemple, la motorisation de l’élément mobile d’un contact doit être apte à vaincre les valeurs crêtes du frottement (près de 10% au-dessus des valeurs moyennes). Inversement pour des systèmes de freinage, il faut pouvoir anticiper les baisses de frottement autour de la valeur moyenne et dimensionner le système sur la base des valeurs minimales. Par ailleurs, on peut observer que plus le niveau de frottement moyen est élevé, plus il risque d’être dispersé (en valeurs absolue et relative), ce qui signifie qu’il présente une moins bonne maîtrise. Cette dispersion conduit parfois, pour des systèmes de freinage, à contenir le frottement moyen à un niveau intermédiaire alors que des valeurs plus élevées pourraient être potentiellement plus intéressantes.

2.2.5 Les principaux types de configuration pour les guidages

Les 2 types de guidage les plus couramment utilisés dans les systèmes mécaniques sont (Figure 10) : le guidage en translation (ou glissière) et le guidage en rotation (ou palier). Il existe d’autres types de configuration de guidage comme la butée (prise d’effort axial dans un palier), et le glissement hélicoïdal (visserie par exemple) que nous ne traiterons pas ici.

![Figure 10: Les 2 principaux types de contact](image)

Pour ces 2 configurations les plus classiques, il est possible d’analyser la situation d’équilibre correspondant au guidage soumis à un effort normal constant en direction et intensité selon un mouvement uniforme.

La Figure 11 présente un guidage en rotation pour un axe libre dans l’alésage et soumis à un effort de direction imposé. Le fonctionnement stationnaire implique de respecter les conditions d’équilibre (Somme des forces et des moments, en un point, nulles), ce qui conduit à un point de contact désorienté par rapport à la direction de la force. La désorientation angulaire \(\phi \) correspond à l’angle de frottement défini par \(f = \tan \phi \). L’expression du couple de frottement \(C_f = f N R \), indique l’existence de 3 axes d’optimisation du couple de frottement dans un palier : le coefficient de frottement, l’effort normal et le rayon du palier.
Pour le guidage en translation subissant un appui ponctuel et une reprise d’effort ponctuelle (Figure 12), l’application du principe fondamental de la statique impose une résultante d’effort normal déportée vers l’entrée du contact et ce d’autant plus que la reprise d’effort est décalée du plan de contact (Figure 12 au centre). Cette résultante déportée vers l’entrée du contact est synonyme de champ de pression plus important sur l’avant du contact, ce qui peut induire des effets d’engagement du contact source d’instabilité (cf. paragraphe 2.6). Si le déport du point de reprise d’effort dépasse une valeur critique, il y a basculement de la pièce (Figure 12 de droite).

L’expression de la force de frottement \(T = f \times N \) (force ou couple) montre l’existence de 2 variables d’optimisation : le chargement normal \(N \) et le coefficient de frottement \(f \).
2.3 L’usure

L’objectif de ce paragraphe est de privilégier une description scientifique des phénomènes à l’origine des quantités de matière éliminées, ou déplacées, lors du fonctionnement (l’usure). Cette description aboutira à la proposition de premières pistes « simples » pour optimiser l’usure [3, 4, 7, 8].

2.3.1 Synoptique d’optimisation de l’usure

A titre préliminaire, il est important de partitionner l’analyse selon la cinématique du contact. On distinguera les situations d’usure induites :

- par un glissement relatif entre les pièces,
- par une cinématique de type roulement,
- par une absence de mouvement relatif apparent.

Cette séparation est imposée par la nature différente des mécanismes mis en jeu par ces 3 cinématiques ce qui conduit à des paramètres différents d’optimisation.

Pour l’identification du type de cinématique, en plus d’indications factuelles sur le mouvement des pièces, l’observation des traces d’usure permet généralement de bien déterminer le type de cinématique rencontrée.
Le glissement relatif induit des traces d’usure dans le sens du mouvement. Pour les deux autres cinématiques, les usures sont plutôt isotropes. Les contacts sans mouvement relatif présentent souvent des débris ou des surfaces corrodés (Figure 14).

2.3.2 Usure en présence d’une situation de glissement

L’usure en glissement est caractérisée par 3 niveaux qualitatifs bien distincts :

- Lorsque les dégradations sont uniformes sur la surface de contact mais avec une intensité très limitée (sans variation de volume décelable), on trouve en général des dégradations limitées à une seule variation microgéométrique voire visuelle qui va rentrer dans une famille de phénomènes dénommée « transformation de surface » et décrite en paragraphe 2.4.
- Dégradation importante mais relativement uniforme. Le lecteur peut se reporter au paragraphe suivant qui détaille les fondamentaux de ce type d’usure.
- Lorsque les dégradations sont très importantes et avec une grande hétérogénéité, le mode de défaillance est généralement le grippage qui est le stade ultime et extrême d’un mécanisme d’usure par adhésion (paragraphe 2.3.2.4).

2.3.2.1 Généralités sur l’usure uniforme

L’usure uniforme se caractérise par une phase de rodage et une phase d’usure stationnaire.

La Figure 15 présente l’évolution de la perte de volume d’un composant du contact en fonction de la distance parcourue par glissement.
L’évolution se traduit par 2 zones principales qui correspondent à des physiques différentes :

- **Le rodage est transitoire.** Il correspond au passage de l’état brut de fabrication à l’état caractéristique du frottement des 2 éléments. Cette phase est attribuée à une évolution microgéométrique des surfaces en contact, à laquelle s’associent généralement des variations superficielles (en composition ou en structure). Naturellement, plus les pièces seront fabriquées dans un état proche de l’état stabilisé, plus le rodage sera court et sans grande conséquence sur l’usure. Inversement un point de départ très éloigné de la situation stabilisée peut conduire à un rodage plus difficile. Une des caractéristiques du rodage est qu’il correspond à une migration de la microgéométrie vers son état stabilisé. C’est lors de cette phase de fonctionnement que l’on va retrouver la plupart des endommagements que nous avons dénommés « dégradations superficielles » (plus d’informations en paragraphe 2.4).

- **La seconde phase présente une partie plus linéaire** qui correspond à une usure stationnaire. L’une comme l’autre des pièces a atteint sa microgéométrie stabilisée et va se consommer de manière stationnaire, c’est-à-dire avec une vitesse constante. En général, cette phase d’usure est recherchée dans la majorité des applications en raison de son caractère stationnaire qui lui confère une grande prédictibilité (informations en paragraphe 2.3.2.2).

2.3.2.2 Analyse de la phase d’usure stationnaire

Lorsqu’il y a perte de de volume pendant la phase **d’usure stationnaire**, l’évolution du volume usé d’un des 2 composants en contact est donnée par la loi d’ARCHARD :

\[
\text{Volume usé en mm}^3 = k \times L \times N
\]

avec :

- **k** : taux d’usure en mm3/Nm (du matériau du composant considéré face à l’antagoniste),
- **L** : longueur parcourue par le contact en m,
- **N** : effort normal en N (supposé constant pendant toute la durée de fonctionnement)

Les 3 variables permettant d’ajuster le volume d’usure sont **k**, **L** et **N**.

La Figure 16 montre 2 situations avec un même couple de matériau mais avec des surfaces de contact différentes. La loi d’Archard montre, et l’expérience le confirme, que ces 2 situations vont générer le
même volume usé mais celui-ci n’aura pas exactement la même géométrie (et en particulier pas la même épaisseur).

Si le paramètre pertinent d’usure n’est pas le volume mais l’épaisseur consommée, alors il faut modifier la loi d’Archard, dédiée au volume, pour permettre d’avoir une expression de la profondeur usée :
 \[e = \frac{\text{Volu usé}}{S} \text{ avec } S \text{ surface de contact, soit} \]

Les 3 variables permettant d’ajuster le volume d’usure sont \(k, p \) et \(L \).

Cas particulier :

Si en plus d’avoir un effort normal sur le contact constant, la vitesse de glissement est également fixe, ces 2 relations se réécrivent de la manière suivante :

On voit apparaître dans la seconde relation le facteur \(p*v \) qui est omniprésent en tribologie. Ainsi, pour l’usure, peu importe les combinaisons des paramètres \(p \) pression moyenne de contact, et de \(v \) vitesse de glissement, des configurations ayant la même valeur du produit \(pv \) auront des usures équivalentes (et des durées de vie équivalentes).
2.3.2.3 Typologie de choix de l’usure par glissement

La Figure 17 présente un synoptique dédié à l’analyse de l’usure du contact glissant.

En présence de glissement, il existe 3 types de mécanismes d’usure qui vont être détaillés dans les paragraphes qui suivent :

- Usure adhérente en paragraphe 2.3.2.4,
- Usure abrasive en paragraphe 2.3.2.5,
- Usure par cavitation en paragraphe 2.3.2.6,
2.3.2.4 Usure adhésive

À un instant donné, la charge appliquée est répartie sur l’ensemble des aspérités en contact. L’usure adhésive est initiée par l’existence de jonctions (ou collages), formées au niveau de certains de ces points de contact. Le mouvement relatif imposé entre ces 2 surfaces va rompre ces jonctions. Les conséquences vont pouvoir varier suivant la localisation de la rupture de la jonction ainsi formée (Figure 18).

Comme on peut le constater sur la Figure 18, la rupture du collage lors du glissement interviendra dans la zone la plus tendre : le matériau 1, le matériau 2 ou la jonction. La situation la plus intéressante est celle où la jonction est la plus tendre car sa rupture générera le minimum de changements de forme sur le contact. Cette situation idéale est néanmoins difficile à obtenir car les matériaux, au voisinage de la jonction, se durcissent, par écrouissage, et/ou par effet d’addition.

Comme on peut le constater sur la Figure 19, hors situation idéale d’une rupture sur le collage, l’usure adhésive, en se développant, va rapidement se transformer en un frottement entre 2 matériaux identiques qui vont naturellement plus facilement se souder entre eux. Par ailleurs, la rupture hors de la jonction fait apparaître des surfaces fraîches (neuves) qui sont nettement plus réactives (faciles à souder) que des surfaces ayant séjourné à l’air libre et dont les contaminations sont des freins au soudeur.
Ces dernières remarques sont à l’origine de 2 éléments particuliers caractéristiques de ce mécanisme d’usure :

- La situation va avoir tendance à s’aggraver plutôt que se stabiliser voire disparaître. On a un phénomène divergeant qui peut se terminer par un blocage des pièces. On parle de grippage sévère.
- Le phénomène s’aggrave à l’endroit où il s’amorce ce qui conduit à une hétérogénéité extrême dans la zone de contact. Les destructions très importantes de la surface peuvent côtoyer des zones faiblement usées (Figure 20).

L’usure adhésive est favorisée principalement par :

- La présence de matériaux métalliques identiques en vis à vis
- L’accroissement de la pression de contact, de la vitesse (produit p x v), et plus précisément de la puissance dissipée par unité de surface dans le contact f x p x v (cf paragraphe 2.5)
- Le frottement à sec
- L’absence ou l’élimination des films superficiels constitués de couches adsorbées, d’oxydes. En effet, ces éléments constituent des freins à la soudure des 2 éléments antagonistes.

2.3.2.5 L’usure abrasive

L’usure abrasive correspond au cas où un corps dur déforme plastiquement, avec ou sans enlèvement de matière, un corps plus mou. Le faciès classique d’usure abrasive est la présence de rayures plus ou moins fines dans le sens du mouvement (Figure 21).
On distingue (Figure 22) :

- L’usure abrasive à deux corps : des sillons sont formés parallèlement à la direction de déplacement, par les aspérités du corps le plus dur.
- L’usure abrasive à trois corps : des particules dures présentes dans l’interface déforment plastiquement les surfaces frottantes en créant des empreintes.

L’usure abrasive mettant en jeu, au niveau élémentaire, des phénomènes d’ordre mécanique, les paramètres dépendant des matériaux sont notamment : la dureté ou la limite d’élasticité, les contraintes résiduelles, la ténacité, la structure (homogénéité, taux d’écrouissage...), les propriétés thermomécaniques dans le cas de sollicitations en température et la forme, la taille des éléments durs causant l’abrasion.

L’abrasion à 3 corps se rencontre en général dans une atmosphère polluée par des particules dures (air ambiant avec sable ou alors huile polluée par des débris d’usure).
2.3.2.6 Usure par cavitation

L’usure par cavitation apparaît exclusivement dans les contacts fonctionnant en environnement liquide. C’est un phénomène d’usure associé à une fatigue superficielle du matériau sous l’effet des ondes de choc dues à l’implosion de bulles de vapeur à la surface des pièces sous l’action de variations de pression très fortes. Dans le cadre de la tribologie, la cavitation se rencontre essentiellement sur certains paliers hydrodynamiques.

Les premiers stades sont caractérisés par la formation d’écailles isolées sur les zones de fortes variations de pression. Ensuite, le phénomène est amené à se généraliser sur l’ensemble de la surface en suivant des directions aléatoires et donc décorrélées de la direction de glissement (Figure 23).

Figure 23 : Dégradation d’un coussinet de palier par cavitation

2.3.3 Usure induite par une cinématique de type roulement

En l’absence de glissement, les mécanismes d’endommagement tels que l’abrasion ou l’adhésion vont présenter des intensités qui sont considérablement plus faibles que ce que l’on rencontre en présence de glissement, ce qui va permettre l’émergence d’autres mécanismes détaillés dans ce paragraphe [9]. Les composants concernés par ces types d’endommagements sont, entre autres, les roulements, les engrenages, les systèmes came-pousoir rotatif.

2.3.3.1 Synoptique de l’usure induite par roulement

Figure 24 : Synoptique de l’usure induite par roulement
2.3.3.2 **Usure de type microécaillage ou écaillage**

L’usure par écaillage ou microécaillage résulte d’un phénomène de création de fissure en raison de contraintes importantes [10] puis de propagation qui va permettre la libération de particules généralement très aplaties qu’on nomme écailles ou microécailles, suivant la taille du débris formé (Figure 25).

![Figure 25 : Exemples d’écailles (à gauche) et de microécailles (à droite)](image)

Si les écailles peuvent atteindre des étendues voisines du millimètre, la taille typique pour les microécailles est nettement plus faible avec un diamètre d’une vingtaine de micromètres pour une épaisseur de l’ordre de quelques micromètres seulement.

Le processus de formation de ces écailles (par amorçage de fissure puis propagation) dépend du type de matériau considéré.

- Dans le cas des matériaux ductiles (typiquement la plupart des matériaux métalliques), les passages successifs créent une accumulation de défauts localisés dans les zones où les sollicitations sont les plus intenses, c’est-à-dire en sous-couches (Figure 26). Lorsque la concentration en défaut atteint une valeur critique (à l’issue d’un nombre de cycles généralement élevé), une fissure est initiée et la concentration de contrainte en front de fissure va entrainer sa propagation lors des sollicitations suivantes. Le mécanisme correspondant à celui de la fatigue, ce mode de défaillance du contact est généralement dénommé usure par fatigue superficielle ou par délamination.

![Figure 26 : Mécanisme d’usure par fissuration des matériaux ductiles](image)
En général, sous l’action de contraintes de contact seule, la propagation de fissures se fait en surface, ce qui conduit au détachement lorsque les dimensions de la fissure atteignent une taille critique. La superposition à ces contraintes de contact, de contraintes volumiques appliquées au massif, peut introduire des déviations sur ces chemins de propagation de fissures avec notamment des fissures pouvant s’enfoncer plus profondément dans le massif et donner lieu à des détachements de matière plus volumineux (les écailles).

A titre de synthèse, on notera que l’écaillage ou le microécaillage dans une zone de contact, ont la même base physique (un amorçage occasionné par une succession d’efforts de contact). C’est la propagation qui gérera, soit des microécailles avec de faible perturbation par les contraintes volumiques, soit des écailles plus volumineuses si les contraintes volumiques deviennent les fissures en profondeur.

- Pour les matériaux à comportement fragile (typiquement les céramiques), le scénario est sensiblement différent. Les fissures apparaissent brutalement, sans mécanisme d’accumulation de défaut (cf. le cas des matériaux ductiles), mais instantanément lorsqu’une contrainte de traction dépasse la limite de résistance du matériau (en traction). Les fissures se produisent donc dans les zones les plus contraintes en tension, que l’on retrouve classiquement en limite de zone de contact et sur l’arrière (Figure 27). Ces fissures se propagent ensuite dans le contact en fonction des contraintes volumiques.

Figure 27 : Mécanisme d’usure par fissuration des matériaux fragiles

L’usure par fissuration est liée, d’une manière générale, à l’existence de contraintes en proche surface des massifs dépassant les limites acceptables des matériaux (traction pour les matériaux fragiles et limite d’endurance pour les matériaux ductiles). La démarche d’optimisation de l’usure par fissuration va donc obéir aux mêmes règles que celle concernant l’optimisation de la tenue mécanique en volume.
On distingue 2 grands axes:

- L’accroissement des performances des matériaux dans la zone affectée. Celle-ci étant en proche surface, différentes solutions se présentent et seront développées dans le paragraphe 3 (ajout de contraintes résiduelles favorables, utilisation de technique de durcissement superficial, …)
- Réduction des sollicitations mécaniques de contact. Dans ce cas il est possible d’envisager 2 pistes : soit la réduction des contraintes tangentes (avec l’utilisation de lubrifiants cf. paragraphe 3.1), soit la réduction des contraintes de contact normales en agissant sur l’ensemble des paramètres les influençant tels que l’effort normal, et la géométrie des pièces au voisinage du contact.

2.3.3.3
Indentation (ou micro indentation)

Ce mécanisme de défaillance du contact est classique pour les contacts roulants mais il peut se rencontrer également dans des contacts statiques ou quasi-statiques (paragraphe 2.3.4). Il repose sur l’existence dans les matériaux en contact de contraintes [9] dépassant la limite de déformabilité réversible (limite d’élasticité). Dans ces conditions, la plastification qui se développe est à l’origine de défaillance du contact. Les contacts localisés tels que les contacts linéiques et surtout ponctuels sont généralement le siège de ce mode de défaillance en raison des contraintes importantes qu’ils vont être capables de développer en raison du caractère localisé de la zone de contact. De ce fait, les composites les plus sensibles à cette défaillance sont les engrenages et les roulements ou butées à rouleaux ou à billes. Le mécanisme est illustré en Figure 28 ci-après avec un contact roulant de type bille sur plan.

Lors du fonctionnement, la surcharge, créée à un moment du fonctionnement, va générer instantanément une plastification du matériau très localisée. Cette plastification va entraîner 2 conséquences néfastes au fonctionnement :

- La première est une altération de la trajectoire du guidage en raison de la présence d’un bourrelet localisé. Cette altération géométrique est généralement source de vibrations et les effets dynamiques associés conduisent généralement à des surcharges lorsque le corps repasse dans cette zone.
- La seconde est une perte d’endurance de la zone plastifiée qui peut entraîner l’initiation de fissuration précoce à ce même endroit.

Les paramètres susceptibles de réduire ce type de défaillance sont de 2 ordres, soit une limitation des contraintes de contact (réduction des efforts ou modification de la géométrie), soit un travail sur les matériaux en surface pour augmenter leurs limites d’élasticité et leurs limites d’endurance.
Ce mécanisme peut se décliner à une échelle plus réduite (microgéométrique) faisant intervenir des particules dures emprisonnées dans le contact qui viennent créer des surcontraintes par effet purement géométrique. On nomme ce phénomène l’endommagement par indents ou microindents (Figure 29).

![Figure 29 : Indents ou microindents](image)

2.3.4 **Usure induite en absence de mouvement apparent**

Ce type d’usure concerne les assemblages mécaniques (liaisons complètes ou encastrément).

Au sein de ces assemblages apparemment fixes, il peut exister des sollicitations mécaniques de type vibratoires qui peuvent occasionner des microdéplacements, trop faibles pour être détectés mais suffisants pour induire des mécanismes d’endommagements par glissement. Dans le même état d’esprit, les microglissements peuvent disparaître mais les sollicitations dynamiques rester (dans la direction normale ou/et tangentielle) et contribuer à des endommagements de type fatigue. Enfin les endommagements peuvent simplement être liés à des phénomènes physicochimiques liés à des couplages entre matériaux avec ou sans interaction avec l’environnement.
Figure 30 : Usure en l’absence de mouvement apparent
2.3.4.1 Le fretting

Le phénomène de fretting [10] regroupe des situations pour lesquelles l’amplitude de glissement reste inférieure à la largeur du contact. Une zone des surfaces frottantes est donc en permanence en contact (Figure 31). Cette zone est d’autant plus étendue que l’amplitude est faible.

On distingue 2 grandes familles de fretting :

- Le fretting usure présent lorsque les débattements permettent d’obtenir un glissement généralisé sur l’ensemble de la surface de contact. Le fretting usure est une variante de l’usure car ce sont les déplacements qui provoquent les dégradations des surfaces. Mais le fait d’avoir en permanence des zones en contact, pour les 2 matériaux, va engendrer deux spécificités au fretting usure : l’augmentation de l’effet de l’environnement et/ou le rôle accru des débris d’usure, moins aptes à être évacués du contact.

Le fretting usure est en effet fortement couplé avec la réactivité de l’environnement (atmosphère, lubrifiant...) sur les 2 matériaux en présence. Les 2 matériaux, dans la partie située en permanence en contact, subissent l’association de contraintes mécaniques de contact et de l’environnement, qui dans certains cas peut-être réactif, à l’image de l’air ambiant. L’association de ces 2 types de sollicitations peut présenter dans certains cas des synergies. Ainsi, par exemple, les débris métalliques, confinés dans le contact, peuvent s’oxyder et se transformer en particules dures avec des formes agressives qui vont déclencher un mécanisme d’abrasion à 3 corps (paragraphe 2.3.2.5).

Par ailleurs, l’environnement [11] peut accélérer la formation de couches d’oxydes friables à la surface de la pièce qui vont s’user rapidement. La vitesse d’usure de la pièce correspond dans ce cas à sa vitesse d’oxydation dans l’interface. Ces phénomènes sont à l’origine d’autres termes utilisés pour décrire cet endommagement : corrosion-frottement, fretting corrosion, ou plus couramment usure par poudre rouge. Enfin ce mode d’usure peut se rencontrer dans des roulements ayant la particularité de fonctionner avec de très faibles mouvements angulaires autour d’une position fixe. Il se nomme dans ce cas faux effet brinell en référence à la formation d’une empreinte sur les bagues de morphologie très similaire au cratère créé lors d’un essai de dureté Brinell.

- Lorsque le contact est soumis à un effort tangentiel inférieur à celui entraînant le glissement, le contact est statique (sans mouvement relatif cf. paragraphe 2.2.2). Pour certaines configurations de contact, comme les contacts linéiques ou ponctuels (Figure 32), ce chargement s’accompagne par des répartitions de contraintes dans le contact indiquant la présence de glissements locaux ou microglissement car les zones voisines respectent les conditions d’adhérence. On évoque alors pour décrire une telle situation, la notion de glissement partiel.
On utilise le terme fretting fatigue pour décrire une situation maintenant un état de glissement partiel du contact avec des efforts tangentiels qui changent de sens. La partie centrale de la zone en contact est en adhérence (faible contrainte tangentielle et forte contrainte normale), elle subira un endommagement de type fatigue occasionné par l’alternance des contraintes de cisaillement. Dans cette zone, la surface n’est pas affectée en général. Sous réserve d’un nombre de cycles suffisant, la fissuration peut éventuellement apparaître dans la partie de cette zone présentant les contraintes tangentielles les plus grandes, c’est-à-dire à la frontière de la zone de glissement (Figure 33). Les fissures sont dans ce cas circonférentielles. Sur la couronne extérieure de glissement, l’endommagement est de type usure par (micro) glissement (Figure 33).

![Figure 32 : Glissement partiel dans un contact ponctuel](image)

![Figure 33 : Faciès d’usure occasionné par du glissement partiel sur un contact ponctuel](image)
2.4 Les transformations de surface

Ce paragraphe présente l’ensemble des transformations subies, lors du fonctionnement, par les surfaces des 2 pièces en contact. Ces transformations sont de 2 types : des transformations d’ordre microgéométrique (évolution de la rugosité) et des transformations physico-chimiques (évolution des matériaux à la surface des pièces).

2.4.1 **Synoptique d’action sur les transformations superficielles**

![Synoptique d’action sur les transformations superficielles](image-url)

Figure 34 : Synoptique d’action sur les transformations superficielles
2.4.2 Changement de microgéométrie

2.4.2.1 Evolution de la rugosité lors du rodage

La Figure 35 ci-après présente l’évolution attendue de la rugosité d’une des pièces lors de la mise en contact avec un antagoniste. On présente diverses évolutions se distinguant par des niveaux de rugosité de départ variables. On constate classiquement une évolution asymptotique indépendante de la rugosité de départ dénommée rodage qui a donné lieu au principe d’usinage du même nom [12]. La rugosité finale correspond à l’adaptation parfaite des 2 matériaux en contact et dépend du mécanisme d’usure activé entre ces 2 matériaux. Ce mécanisme va pouvoir évoluer avec les conditions de fonctionnement.

Figure 35 : Evolution de la rugosité

Il est important de noter également que la constante de temps nécessaire à l’établissement de la rugosité adaptée peut être extrêmement variable (Figure 36). Elle peut être très rapide et assimilable à une période de rodage de durée négligeable par rapport à la durée de fonctionnement mais également être extrêmement longue et dépasser la période de fonctionnement du mécanisme si pour la pièce étudiée la vitesse d’usure est très faible.

Figure 36 : Influence de la vitesse de rodage sur l’évolution de la rugosité lors de la phase de fonctionnement
2.4.2.2 Déplacement de matière par rayure

La déformation par rayure est obtenue lors du déplacement par glissement, ou roulement, d’un corps dur ayant une forme suffisamment aigüe pour générer des pressions de contact importantes vis-à-vis de la résistance du matériau sur lequel on se déplace (Figure 37).

La manifestation la plus visible de ce phénomène de transformation en surface est la présence d’un déplacement irréversible de matière par déformation plastique [3]. Il prend la forme de bourrelet dit latéral sur les bords de la trace, et frontal juste en amont du contact. Ce mécanisme de rayure se produit généralement sans émission de débris si l’intensité de la rayure est faible mais des débris peuvent apparaître lorsque vitesse et efforts normaux augmentent. On obtient alors l’usure abrasive (2.3.2.5).

Sans atteindre ce niveau de sollicitation, ce mécanisme crée principalement une modification géométrique de la pièce (et souvent microgéométrique) qui peut être assimilée à une modification locale de la rugosité de la pièce.

Une autre conséquence de la rayure est l’endommagement consécutif à la plastification locale du matériau. En effet cette plastification s’accompagne, pour la plupart des matériaux, d’une augmentation de la densité de défauts (phénomène d’écrouissage) qui génère une augmentation de la résistance à la rupture du matériau mais une réduction de son potentiel de résistance en fatigue.

![Figure 37 : Surfométrie sur une rayure (Document Pr C. GAUTHIER UNISTRA ICS UPR22)](image)

2.4.2.3 Déplacement de matière par indentation

De la même manière qu’avec la rayure, une indentation (uniquement dans la direction normale) est capable de modifier le relief d’une pièce. Le mécanisme a déjà été présenté en paragraphe 2.3.3.3 et il est basé sur l’application de contrainte dépassant le seuil d’élasticité du matériau. L’application la plus connue de modification microgéométrique par indentation est probablement le sablage ou le grenaillage. Il permet entre autre d’aboutir à une microgéométrie composée de la juxtaposition de cratères (Figure 38).
2.4.3 **Evolution physicochimique des matériaux en surface**

Après fonctionnement du contact, il apparaît des changements de différents types (Figure 39) à la surface des éléments en contact [3] :

- Changement physique de type écrouissage par exemple. C’est le cas lors de sollicitations mécaniques de contact sévères, soit dans la direction normale, soit dans la direction tangentielle. La plastification de la surface de la pièce est particulièrement identifiable surtout pour des matériaux diphasiques. Elle peut conduire jusqu’à un affinage de la taille de grain si la thermique atteinte par le contact est compatible avec une recristallisation.

- Changement de phase (Figure 40). La couche superficielle du matériau après fonctionnement présente une structure différente de celle de départ. Le changement de phase ainsi révélé peut résulter d’effet thermique induit soit par le chauffage, soit par refroidissement rapide (trempe par exemple). Un changement de composition peut aussi être à l’origine de ce changement de phase (mélange dans le contact des constituants des 2 matériaux en contact s’ils sont différents, ou alors action de l’environnement).
2.4.4 Contraintes résiduelles

Les procédés de fabrication (usinage, forgeage, traitements thermiques, ...) induisent dans les pièces mécaniques des contraintes résiduelles. Ces contraintes témoignent donc de l’histoire de la pièce et résultent de la combinaison des effets mécaniques et thermiques produits par le mode d’élaboration. Les contraintes résiduelles subsistent dans les pièces en l’absence de sollicitations extérieures et elles se superposent aux contraintes engendrées par les sollicitations extérieures (mécaniques, thermiques ou chimiques). Elles peuvent être néfastes et entraîner une diminution de la durée de vie en fatigue ou favoriser l’apparition des fissures. Cependant, lorsqu’il s’agit de contraintes de compression, elles ont au contraire un effet bénéfique en retardant l’apparition des fissures et/ou en augmentant la durée de vie en fatigue. Leur connaissance s’avère donc nécessaire dans les problèmes de fatigue de contact.

Différentes méthodes existent pour les déterminer dont les principales sont :

- Diffraction des RX,
- Méthode du trou incrémental,
- Méthode ultrasonore.

Différents traitements permettent d’introduire des contraintes résiduelles de compression dans les couches superficielles :

- Les traitements superficiels par écrouissage (grenaillage, galetage, brunissage, martelage),
- Les traitements thermochimiques (trempe superficielle, cémentation, nitruration, carbonitruration).
2.5 Les phénomènes thermiques

L’objectif de ce paragraphe est de détailler la nature et le contrôle des phénomènes thermiques qu’il est possible de rencontrer dans un contact. L’objectif principal est de présenter ces éléments de manière phénoménologique ce qui permet, de surligner les paramètres influents, de proposer des règles empiriques de dimensionnement, et de justifier ainsi les voies d’optimisation de la thermique du contact.

2.5.1 Synoptique d’optimisation des phénomènes thermiques dans le contact

Figure 41 : Synoptique phénomènes thermiques

2.5.2 Puissance dissipée dans le contact

La puissance dissipée par un contact correspond au produit de la force de frottement par la vitesse de glissement. Elle peut prendre des expressions différentes suivant la configuration du contact : guidage en translation ou guidage en rotation (Figure 42) :

Guidage en translation $W = T \times v_g = f_d \times N \times v_g$

Guidage en rotation $W = T \times v_g = f_d \times N \times R \times \omega$

Figure 41 : Synoptique phénomènes thermiques
Cette puissance dissipée par le contact va prendre différentes manifestations qui sont les suivantes :

- Echauffement
- Déformation Plastification
- Fissuration
- Bruit, Vibration

La répartition entre les différentes manifestations est délicate à établir, et surtout variable suivant la situation. Il est toutefois reconnu que l’échauffement du contact constitue la manifestation principale de la puissance dissipée (>95%). Pour les calculs thermiques, le fait de considérer que 100 % de puissance dissipée se transforme en chaleur constitue donc une bonne approximation, et est donc largement utilisée.

2.5.3 Puissance dissipée par unité de surface

La puissance par unité de surface (de contact) s’obtient en divisant la puissance dissipée par la surface apparente de contact, soit :

\[W_s = \frac{W}{S} = f^*N^*v_g/S = f^*p^*v_g \]

2.5.4 Echauffement du contact

Cette puissance par unité de surface va constituer un paramètre de premier ordre pour les phénomènes thermiques car c’est une densité de flux thermique générée par le contact sur les 2 pièces.

Le calcul thermique est délicat car il y a 2 grandes familles de sources de complexité du calcul thermique (Figure 43) permettant d’aboutir à l’identification de la température atteinte au niveau des surfaces [13]:

- Si la génération de chaleur est parfaitement localisée (dans le contact), un premier niveau de complexité se situe au niveau de la délocalisation et la multitude des puits de chaleur qui vont permettre l’évacuation de la chaleur générée dans l’interface. Une première possibilité est la conduction dans l’une et l’autre des pièces suivant un partage inconnu entre les 2 pièces. L’échange thermique existe également avec l’environnement.
sous forme de convection plus ou moins forcée si les pièces sont en mouvement. Enfin l’aspect transitoire de l’analyse thermique intervient en raison de la cinématique du contact.

![Diagram of heat transfer in contact](image)

Figure 43 : Problématique de la thermique du contact

- La seconde difficulté pour analyser la thermique du contact porte sur le caractère multi-échelle du contact. En effet, le contact peut être analysé à une échelle macroscopique faisant intervenir des surfaces théoriques (lisses) comme le montre le schéma du haut de la Figure 44. En parallèle (schéma du bas de la Figure 44), une analyse à une échelle inférieure (celle de la microgéométrie) révèle des hétérogénéités importantes sur le plan de la thermique avec des phénomènes de constriction engendrés par les spots de contact au niveau des aspérités [14]. Des calculs réalisés à ces 2 échelles conduisent à des résultats très différents qui sont difficiles à arbitrer faute de pouvoir mener facilement les caractérisations thermiques indispensables à la validation.
Le niveau scientifique actuel n’a pas encore levé l’ensemble de ces difficultés pour apporter des solutions facilement utilisables. En l’absence de calcul thermique fin, il existe des règles empiriques identifiant les flux maximaux tolérés par un contact. Ces critères sont détaillés dans le paragraphe suivant.

2.5.5 **Règles empiriques sur les limites de densité de puissance**

Ces critères empiriques ne s’expriment pas sous forme d’un critère unique car, comme décrit en 2.5.4, le flux admissible dépend du potentiel de refroidissement du contact [15]. Il va donc exister différentes valeurs de seuils suivant la performance en refroidissement du contact (Tableau 1). Comme pour toute règle empirique, le lecteur devra naturellement rester critique vis-à-vis des valeurs proposées. En effet, ces valeurs sont basées sur les situations usuelles, ce qui n’exclut pas de s’en écarter pour des cas particuliers.
Tableau 1 : Les différents seuils empiriques de pv et fpv en fonction de la situation de contact

<table>
<thead>
<tr>
<th>Caractéristique du contact</th>
<th>Coefficient de frottement f</th>
<th>pv (MPa.m/s)</th>
<th>fpv (W/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact métal sur métal dans l’air</td>
<td>0,20 à 0,30</td>
<td>0,5</td>
<td>0,15</td>
</tr>
<tr>
<td>Matériau à base de lubrifiant solide à sec dans l’air</td>
<td>0,05 à 0,20</td>
<td>1</td>
<td>0,15</td>
</tr>
<tr>
<td>Matériau à base de lubrifiant solide dans un liquide non lubrifiant</td>
<td>0,02 à 0,15</td>
<td>3</td>
<td>0,30</td>
</tr>
<tr>
<td>Matériau fonctionnant à la graisse</td>
<td>0,05 à 0,10</td>
<td>1,5</td>
<td>0,15</td>
</tr>
<tr>
<td>Matériau dans un liquide lubrifiant sans régime hydrodynamique</td>
<td>0,05 à 0,10</td>
<td>8</td>
<td>0,5</td>
</tr>
<tr>
<td>Matériau dans un liquide lubrifiant avec régime hydrodynamique</td>
<td>0,001 à 0,01</td>
<td>700</td>
<td>1</td>
</tr>
</tbody>
</table>

Les règles basées sur le pv et sur le fpv sont naturellement cohérentes. La comparaison de ces 2 critères amène les remarques suivantes :

- La formulation utilisant le terme pv ne nécessite pas l’utilisation de la valeur du coefficient de frottement f mais suppose une connaissance exacte de la description du contact (1ère colonne du tableau 1) car les valeurs seuils à utiliser en sont très dépendantes. Avec ce type de critère elles peuvent varier sur 3 ordres de grandeur (entre 0,5 et 700).
- La formulation utilisant le terme fpv est plus universelle avec des valeurs seuils variant sur un seul ordre de grandeur (entre 0,15 et 1), ce qui montre que la valeur du coefficient de frottement est un paramètre incontournable au même titre que v ou p. De plus, ce paramètre permet de se raccorder à une explication physique simple : la densité de puissance dissipée par le contact (paragraphe 2.5.3).
2.6 Les vibrations et le bruit généré par le contact

L’objectif de ce paragraphe est de détailler les différentes manifestations de type vibratoire générées par un contact [15]. Ces manifestations vibratoires sont dénommées indifféremment, bruit ou vibration de frottement, et peuvent être audibles ou non suivant la puissance et le domaine fréquentiel de la manifestation vibratoire.

A titre de préliminaire, il faut avoir à l’esprit qu’il n’existe pas un mécanisme unique de génération de vibration par un contact mais plusieurs scénarios différents qui vont être détaillés ci-après :

- Bruit de rugosité
- Couplage modal
- Stick slip ou glissement saccadé
- Sprag slip (arcboulement)

Nous présenterons ces différents phénomènes en nous limitant à l’aspect phénoménologique et en proposant une description très sommaire des solutions palliatives.
2.6.1 Synoptique d’optimisation des vibrations de frottement

Figure 45 : Synoptique des vibrations de frottement

2.6.2 Bruit de rugosité

Le bruit de rugosité est obtenu lors du mouvement relatif de 2 corps rugueux [16] avec un relief orthogonal au mouvement (Figure 46).
Dans ce cas, le mécanisme générateur du bruit est intimement lié à la rugosité des surfaces. Lors du frottement des solides, les surfaces rugueuses engendrent des impacts inter-aspérités qui provoquent des vibrations. Ces impacts déclenchent la vibration des corps en contact et donc une bruyance. On retrouve donc dans le spectre de vibration, 2 composantes fréquentielles distinctes. La première composante fréquentielle est caractéristique des modes propres des pièces environnantes (vibration en mode déformable sous l’action d’impacts occasionnés par les chocs entre aspérités). La seconde composante est celle liée au temps entre 2 impacts successifs. Compte tenu de la nature du phénomène, la fréquence de ce type de vibrations varie linéairement avec la vitesse relative entre les pièces.

2.6.3 Le glissement saccadé (Stick-Slip)

Le phénomène du stick-slip est décrit comme un contact entre deux surfaces qui alterne des phases de collage et de glissement [17] avec un caractère dynamique induit par les différences de niveau de frottement dans ces 2 phases de fonctionnement. Généralement, le coefficient de frottement statique entre ces deux surfaces est plus grand que le coefficient de friction dynamique (cf. paragraphe 2.2.2). Le glissement saccadé s’illustre assez bien en imaginant un contact avec les 2 caractéristiques suivantes :

- Mise en mouvement d’un contact dont un élément au moins est déformable,
- Contact présentant un frottement statique supérieur au frottement dynamique.

La Figure 47 ci-dessous illustre la modélisation mécanique du contact et le comportement obtenu lorsque l'on suit le mouvement du patin. Le patin oscille autour de la position que donnerait le frottement dynamique avec une amplitude maximale qui correspond à la position imposée lors du démarrage du glissement (et induite par le frottement statique). Plus le coefficient de frottement statique est éloigné du frottement dynamique, plus l’amplitude de débattement sera importante. Sur le plan pratique la liaison du patin, modélisée ici uniquement par une partie élastique, comporte une composante plus ou moins importante d’amortissement (donné par l’amortissement interne du matériau voire les interfaces). On montre par le calcul, que la présence d’un amortissement même faible limite ce phénomène de stick slip aux basses vitesses car si la vitesse de glissement augmente, l’amortissement, même faible, permet d’avoir une atténuation de l’amplitude qui s’étouffe après quelques oscillations. Au plan pratique, le stick-slip est limité en vertu de cette remarque à des vitesses de glissement inférieures au millimètre par seconde.
Figure 47 : Schéma du stick-slip et notion de vitesse critique

Dans le même esprit, le calcul montre qu’une évolution décroissante du coefficient de frottement avec la vitesse de glissement (Figure 48) constitue un élément moteur au stick-slip. On recherchera un coefficient de frottement évoluant de manière croissante en fonction de la vitesse de glissement pour annuler le glissement saccadé. Cette justification est probablement une des raisons qui explique que l’utilisation de lubrifiant solide tel que le PTFE est un excellent remède au glissement saccadé.

Figure 48 : Relation entre le coefficient du frottement et la vitesse du corps en mouvement

2.6.4 Arc-boutement (Sprag-Slip)

L’arc-boutement est également une instabilité de frottement dans laquelle intervient un effet d’auto blocage par augmentation incontrôlée [15] des efforts normaux et de frottement (Figure 49).
Dans un tel dispositif, on constate que qualitativement, il existe une forte interaction entre effort de frottement et effort normal :

- En effet, comme dans tout contact, la force tangentielle de frottement va augmenter si l’effort normal augmente (en vertu de la loi de coulomb).
- En parallèle, on peut constater sur ce mécanisme que l’existence d’une force de frottement va générer un couple autour de l’axe de la liaison pivot qui ne pourra être repris que par un changement de l’effort normal (en particulier une augmentation). En résumé, une augmentation du frottement génère une augmentation de l’effort normal.

L’interaction mutuelle entre effort normal et effort tangentiel, propre à ce type de mécanisme, est susceptible de générer différents types de comportement :

- Pour les géométries caractérisées par une inclinaison de la barre proche de la verticale (θ faible), une instabilité se traduit par un blocage (ou arc-boutement : cas a) de Figure 49).
- Les systèmes utilisant des barres plus horizontales (cas b) de la Figure 49), alors l’instabilité disparaît et le glissement se produit de manière stationnaire. La frontière entre comportement stable et instable se produit lorsque l’angle θ est égal à l’angle du cône de frottement ϕ défini par la relation f=tgϕ.

Il est important de noter que l’inversion du sens de la vitesse supprime ce problème car le changement de sens de la force de frottement tend à réduire l’effort normal au lieu de l’augmenter, ce qui supprime l’arc boutement (dont la cause est une augmentation de l’effort normal).

2.6.5 Le couplage modal (Modal coupling)

Les mécanismes décrits ci-dessus ne sont pas les seules causes d’instabilité de frottement (ou de vibrations de frottement). En particulier, le crissement des freins peut exister en présence d’un coefficient de frottement stable notamment lorsque les vitesses mises en jeu sont très importantes. Dans le mécanisme du couplage de mode, la coïncidence de fréquences propres dans 2 directions...
distinctes (souvent parmi la direction normale au contact, la direction de frottement ou le pivotement dans le sens du frottement) peut induire plus d'énergie dans le système qu'il ne peut en dissiper (Figure 50).

Figure 50 : Schéma du couplage de mode

Il est important de noter que le dispositif vibre à la fréquence de coïncidence des 2 modes couplés [15] et ce quelle que soit la vitesse de glissement dans le contact. Un tel mécanisme est assez courant sur les dispositifs avec une ou des liaisons très souples pour un des éléments en contact.

Les solutions à une telle instabilité de frottement s’articulent autour de 3 familles de solutions distinctes :

- La première consiste à ajouter un amortissement suffisant pour étouffer cette instabilité.
- La seconde famille de solutions consiste à modifier la géométrie des pièces et des liaisons pour éviter la coïncidence de fréquence.
- Enfin des actions au niveau des matériaux de friction permettent d’aboutir à l’élimination totale des vibrations sans que la cause ne soit à ce jour bien identifiée.
3 Étape 3 : La recherche de solutions via les matériaux

Ce chapitre concerne la recherche de solutions lorsque l’on a déjà agi sur les paramètres fonctionnels classiques tels que la force normale sur le contact, la vitesse de glissement voire certaines dimensions du contact. Il faut alors intervenir sur les matériaux pour maîtriser le comportement du contact. Dans ce chapitre les différents points abordés sont :

- Les modifications possibles du coefficient de frottement en jouant sur les matériaux (paragraphe 3.1)
- Les paramètres matériaux réduisant le grippage et l’usure adhésive (paragraphe 3.2)
- Les paramètres matériaux pour lutter contre l’usure abrasive (paragraphe 3.3)
- Les paramètres matériaux pour lutter contre l’usure par fatigue de contact (paragraphe 3.4)

3.1 La lubrification

La lubrification est un ensemble de techniques permettant de réduire le frottement, l’usure entre deux éléments en contact et en mouvement l’un par rapport à l’autre. Elle est basée sur la mise en place dans l’interface d’un élément facilement cisaillable, le lubrifiant, qui permet de réduire la force de frottement (Figure 51).

Figure 51 : Principe de la lubrification : Interposition dans le contact d’un corps facilement cisaillable

Les corps lubrifiants sont caractérisés par :

- Leurs résistances dans la direction normale
- La facilité de les cisailler suivant la direction tangentielle

3.1.1 Synoptique d’optimisation de la lubrification

On peut mettre en œuvre des solutions de lubrification avec des lubrifiants fonctionnant dans tous les états de la matière : solide, (pâteux), liquide ou gazeux [18-20]. Mais il est important d’avoir à l’esprit que ces différents états de la matière ne vont pas pouvoir permettre d’accéder à des niveaux de performance équivalents (Figure 52).
Figure 52 : Synoptique du choix de la lubrification

Valeur de f à ne pas dépasser

- $f < 0.01$
 - oui
 - $-40 \, ^\circ C < \theta < 200 \, ^\circ C$
 - oui
 - Film épais continu
 - pv seuil = 700
 - non
 - non
 - $0.01 < f < 0.1$
 - oui
 - $-40 \, ^\circ C < \theta < 200 \, ^\circ C$
 - oui
 - Film liquide discontinu
 - pv seuil = 8
 - Graisse
 - pv seuil = 1.5
 - non
 - non
 - $0.1 < f < 0.2$
 - oui
 - $\theta < 200 \, ^\circ C$
 - oui
 - Lubrifiant solide dans un liquide
 - pv seuil = 3
 - Lubrifiant solide dans l'air
 - pv seuil = 1
 - non
 - non
 - $f > 0.2$
 - oui
 - Oxydes de chrome
 - Carburé de bore
 - pv seuil = 0.3
 - oui

- $0.1 < f < 0.2$
 - oui
 - $-40 \, ^\circ C < \theta < 200 \, ^\circ C$
 - oui
 - $\theta < 200 \, ^\circ C$
 - oui
 - Lubrifiant solide dans un liquide
 - pv seuil = 3
 - Lubrifiant solide dans l'air
 - pv seuil = 1
 - non
 - non
 - $f > 0.2$
 - oui
3.1.2 Les différents types de lubrifiants

Ce paragraphe propose des informations destinées à préciser la nature des différents types de lubrifiants utilisés et leurs modes de fonctionnement.

3.1.2.1 Les lubrifiants solides

Les lubrifiants solides sont des composés solides facilement cisaillables, de structure lamellaire ou polymérique et de faible dureté.

Les principaux lubrifiants solides permettant d'obtenir des coefficients de frottement maîtrisés (inférieurs à 0,20) au voisinage des températures ambiante sont en nombre très limités. Les plus classiques sont le graphite, le bisulfure de molybdène MoS₂, tous deux d'origine naturelle et le PTFE obtenu par synthèse.

- **Le graphite** est utilisable comme matériau de frottement dans l’air de -180 à +450 °C et jusqu’à 2000 °C en atmosphère neutre mais son efficacité est due à l’adsorption de vapeur d’eau ou de gaz ; ses qualités frottantes sont donc diminuées à chaud, sous vide ou dans les milieux anhydres (il tend alors à devenir abrasif).

 Son coefficient de frottement varie entre 0.05 et 0.2.

 Il peut être utilisé sous forme de poudre, de dispersion dans de l’eau, dans les huiles minérales et synthétiques, dans des solvants volatiles comme additif dans la composition de certaines graisses ou comme composant de vernis de glissement.

- **Le Bisulfure de Molybdène** (MoS₂) peut être utilisé à l’air de -180 à +350 °C et en atmosphère neutre ou réductrice jusqu’à 650 – 700 °C. Ses propriétés de frottement sont améliorées dans le vide poussé où il peut atteindre des températures de 1100 à 1300 °C.

 Son coefficient de frottement varie de 0.02 à 0.2.

 Il s’utilise sous forme de poudres, de dispersions dans un fluide volatile et principalement sous forme de vernis de glissement seul ou en association avec d’autres lubrifiants solides.

- **On peut également citer parmi les lubrifiants à structure hexagonale lamellaire** :

 - le nitrate de bore (BN) céramique également appelée graphite blanc. Il est surtout utilisé sous forme de vernis de glissement de 800 °C à 750 °C. Son coefficient de frottement est de l’ordre de 0.2 – 0.3.

 - le fluorure de cérium (CeF₃) utilisé à plus haute température que le MoS₂ jusqu’à 1000 °C dans l’air ou l’argon.

 - Le fluorure de calcium (CaF₂) utilisé pour la lubrification à haute température de 500 à 1000 °C notamment en présence de radiations. Il s’utilise sous forme de film.

- **Le PTFE ou polytétrafluoroéthylène** (C₂F₄)ₙ considéré comme un thermoplastique peut s’utiliser entre -160 °C (voir -200 °C) et +250 °C. C’est le meilleur matériau plastique autolubrifiant avec des valeurs très faibles de coefficient de frottement (0.02 à 0.05) sous charges relativement élevées mais faible vitesse. Sa limitation en vitesse est due au
fait que c’est un isolant thermique. Sous forme massique, sa capacité de charge est limitée par sa déformation plastique.

- Il existe d’autres polymères fluorés aux propriétés voisines du PTFE : le copolymère FEP (tétrafluoroéthène-perfluoroprène) moins cher que le PTFE mais avec des propriétés de frottement moins bonnes ; le PVDF ou PVF2 (polyfluorure de vinylidène), plus résistant mécaniquement mais utilisable entre -40 et +150 °C ; le PTFCE (polytrifluorochloréthylène), de moins en moins employé, utilisable jusqu’à -250 °C.

- Parmi les autres lubrifiants solides, on peut notamment citer les polyamides (PA), les polyéthylènes haute densité (PE hd), les polyacétals ou polyoxyméthylènes (POM), les polyimidès (PI).

3.1.2.2 Les lubrifiants pâteux

Ce sont des produits viscoplastiques à deux phases qui comportent :

- Une phase liquide : huile minérale ou fluide synthétique formant un support dispersant et représentant parfois plus de 90 % du poids de la graisse. Des additifs solubles améliorant les performances : antioxydant, anti-usure, antirouille, extrême pression, etc.,
- Des additifs solides : graphite, bisulfure de molybdène,
- Une phase solide : dispersée se comportant en agent épaississant, généralement un savon mélittique. Cette phase représente de 8 à 40 % du poids. Dans certaines graisses, l’épaississant est un composé inorganique comme la bentonite, sorte d’argile possédant de remarquables propriétés d’adsorption.
- Et éventuellement, de l’eau ou de la glycérine facilitant la dispersion des autres produits.

Le principe actif de la graisse pour la lubrification est l’huile contenue. Ceci dit bien que la composition de l’huile contenue dans la graisse approche celle des huiles utilisées seules, les performances ne sont pas équivalentes entre ces 2 produits en raison des faibles quantités d’huile libérées par la graisse. L’intérêt de la graisse en comparaison avec une lubrification par huile réside principalement dans la mise en œuvre et plus précisément au niveau de l’étanchéité à installer : beaucoup moins importante dans le cas de la graisse que pour l’huile en raison de la différence de consistance des 2 produits.

3.1.2.3 Les lubrifiants liquides

Le lubrifiant liquide le plus utilisé est l’huile dont la composition est assez complexe :

- Environ 80 % de l’huile est constitué de ce qu’on nomme l’huile de base qui est un hydrocarbure avec une longueur de chaine comprise entre 20 et 40 atomes de carbone lui conférant une viscosité intéressante (en dessous on trouve la famille des carburants (essence, gazole) avec des viscosités faibles, et au-dessus les goudrons, inutilisables en lubrification).
- Le reste, aux alentours de 20 %, est constitué d’un grand nombre d’additifs intervenant pour des fonctions spécifiques physiques, chimiques voire tribologiques pour améliorer, compléter les propriétés naturelles de l’huile de base.

Un intérêt du lubrifiant liquide par rapport au lubrifiant solide réside dans son aptitude à évacuer la chaleur, et les faibles niveaux de frottement que l’on peut atteindre. Attention, une huile donnée va pouvoir proposer un large éventail de performances en frottement de valeurs modestes voisines de 0.10
jusqu'à des valeurs exceptionnellement basses (inférieures à 0.010). L'efficacité en frottement du film d'huile est directement liée à l'épaisseur du film formé entre les 2 pièces. En première approche, plus cette épaisseur se réduit plus le frottement augmente. Les 2 mécanismes extrêmes de fonctionnement du film d'huile (Figure 53) sont les suivants [20, 21].

![Figure 53 : Les 2 mécanismes de fonctionnement du film d'huile](image)

Les huiles se caractérisent par :

- **La densité** : Les valeurs courantes de densité des huiles minérales varient entre 0.85 et 0.95 et sont en première approximation peu dépendantes de la température.
- **La couleur** : La couleur des huiles peut être affectée par la présence de pigment coloré ce qui permet de faciliter la distinction entre des huiles à performances très différentes lorsqu'elles doivent être utilisées dans un même mécanisme (par exemple des huiles hydrauliques de couleur rouge et des huiles lubrifiantes de couleur marron clair dans les automobiles).
- **Conductivité thermique** : On peut prendre comme valeur moyenne pour les huiles minérales 0.14 W/mK.
- **Viscosité** : C'est une des propriétés capitales des huiles de graissage qui doivent fonctionner avec un film fluide (cas b) de la Figure 53. Sa forte sensibilité à la température impose de réaliser des dimensionnements intégrant les températures extrêmes de fonctionnement.
- **L'onctuosité** : C'est la propriété d'adhérence du lubrifiant avec les surfaces des pièces en contact. Elle conditionne la solidité du film limite (Cas a) de la Figure 53. Cette propriété est essentielle dans les régimes de frottement onctueux et mixte.
- **Compressibilité** : Les huiles sont pratiquement incompressibles dans la mesure où elles sont exemptes de gaz dissous.
- **Coefficient de viscosité-pression** : Si la pression croît, la mobilité des molécules diminue et la viscosité augmente selon une loi exponentielle. Pour une huile minérale classique, la viscosité double dès que la pression augmente de 350 bars. Dans le cas de contacts localisés en mouvement sous très fortes charges, comme dans les engrenages, il faut tenir compte de cet accroissement de la viscosité sous l'effet de la pression.

Le frottement lubrifié est subdivisé en plusieurs régimes différents :

- **Lubrification limite** : l'épaisseur du film lubrifiant est insuffisante pour isoler complètement les solides en contact, il ne subsiste qu'une couche adsorbée quasi monomoléculaire (morphologie en a) de la Figure 53). C'est la solidité de cette dernière qui empêche les contacts métal sur métal. L'aptitude du lubrifiant à former une couche adhérante, appelée onctuosité, est ici une qualité primordiale. Ce régime de lubrification nécessitant de faible quantité d'huile (couche quasi mono moléculaire), il n’est pas indispensable d’avoir la présence physique d’huile au
voisinage du contact. Il est possible de rencontrer ce mécanisme en présence de vapeur d’huile, surtout si le contact fait intervenir des surfaces présentant une forte aptitude à adsorber l’huile.

- **Lubrification « mixte »** [22]: le fluide supporte une partie importante des charges mais des contacts subsistent entre les aspérités. Le frottement est minimal mais ce régime est très instable et il vaut mieux l’éviter. Le terme mixte évoque la coexistence dans le contact de zone fonctionnant avec un régime de lubrification limite et le reste avec un régime basé sur un film fluide.

- **Lubrification hydrodynamique** [23]: le lubrifiant liquide est entraîné et mis sous pression par le mouvement relatif des surfaces. Il sépare totalement ces dernières (morphologie en b) de la Figure 53) et supporte l’intégralité des charges, grâce à sa viscosité, qui correspond à sa résistance à l’écoulement. Dans ce cas de figure les vitesses relatives ne sont jamais très faibles mais les pressions restent modérées, de sorte que l’on peut négliger les déformations des pièces et la compressibilité du lubrifiant.

- **Lubrification hydrostatique ou aérostatique** [24]: le film fluide (morphologie de type b) de la Figure 53) ou gazeux est obtenu en envoyant, à l’aide d’une pompe ou d’un compresseur, un liquide ou un gaz sous pression pour séparer les surfaces qui peuvent alors être ou non en mouvement relatif. Elle est la garantie d’un frottement extrêmement faible et d’une absence quasi totale d’usure mais il faut une source d’énergie extérieure.

3.1.2.4 Les lubrifiants gazeux

Dans certains mécanismes on trouve des surfaces mobiles totalement séparées par un flux de gaz maintenu sous pression; le plus souvent, pour des raisons évidentes de disponibilité et de coût, on utilise de l’air. Il ne s’agit pas là d’une lubrification au sens propre du terme, mais d’une disposition constructive qui permet d’utiliser à bon escient les propriétés physiques des écoulements gazeux.

Le gaz peut être utilisé sous faible pression, il se comporte alors comme un fluide à peu près incompressible, et l'on obtient alors des déplacements sur « coussins d’air ». Des véhicules ont été construits sur ce principe, comme les « hovercrafts » ou l’aérotrain développé voici quelques décennies par l’inventeur Bertin. Dans d’autres applications, le gaz est soumis à des pressions beaucoup plus importantes et il se comporte alors comme un fluide compressible ; ce mode de fonctionnement est celui des guidages aérostatiques qui permettent d’obtenir des vitesses très élevées sans aucun contact matériel. Un exemple hélas connu de tous ou presque est le guidage des fraises de dentistes, l’air comprimé étant ici à la fois la source d’énergie, puisqu’il fait tourner une petite turbine et l’élément de sustentation du rotor mobile, lequel atteint couramment 150 à 200 000 tours/min.
3.1.3 La mise en œuvre des lubrifiants

3.1.3.1 Synoptique d'optimisation de la lubrification solide

Figure 54 : Synoptique lubrification solide

3.1.3.2 Mise en œuvre des lubrifiants solides : les Vernis de glissement

Un vernis de glissement [19, 25] consiste en une fine dispersion de lubrifiants dans un liant polymérique. L’ensemble est pulvérisé, avant polymérisation, à la surface des pièces de manière à obtenir une couche d’épaisseur contrôlée (de quelques micromètres jusqu’à une centaine de micromètres). La polymérisation, à température ambiante ou à chaud suivant le type de liant utilisé, permet d’aboutir à un film solide adhérant aux surfaces (partie de gauche de la Figure 55). Les vernis de glissement sont mis en œuvre lorsque la situation, pour de multiples raisons, ne permet pas d’utiliser la lubrification par huile ou graisse : environnements sévères tels que vide poussé, hautes et basses températures, radiations, faibles vitesses de déplacement ne permettant pas de créer un film fluide, petits débattements.
Figure 55 : Mise en place du tribofilm de lubrifiant solide avec un vernis de glissement

L’éfficacité du vernis de glissement est en général améliorée lors de la phase de rodage par uniformisation du lubrifiant en surface avec orientation préférentielle des lamelles de lubrifiants solides (partie de droite de la Figure 55). On nomme tribofilm les modifications opérées sur le vernis de glissement lors du rodage.

Le coefficient de frottement obtenu avec ces tribofilms va dépendre du type de lubrifiant utilisé, de la nature du liant et de la nature de l’environnement. Des guides de choix sont proposés par ailleurs [25] mais de manière générale le choix se fait par empirisme, après test sur tribomètre, ou en conditions réelles.

Pour leur donner une meilleure efficacité, la mise en place de ces vernis de glissement exige de suivre des procédures de préparation des surfaces très rigoureuse qui comprennent :

- Des opérations de dégraissage, de sablage ou de grenaille
- Des traitements de conversion tels que la phosphatation pour les aciers ou l’anodisation pour les alliages d’aluminium

Les propriétés de la surface d’application sont les suivantes :

- Dureté : 50 à 56 HRC
- Etat de surface des composants à traiter : rugosité Ra situé de préférence entre 0.05 et 0.8 μm.

3.1.3.3 Mise en œuvre des lubrifiants solides : les Traitements de conversion

Les traitements de conversions chimiques consistent à modifier, par réaction chimique (assistée ou non du passage d’un courant électrique), la surface existante de façon à créer un changement de composition sur une certaine épaisseur apte à apporter une amélioration de performance. Les actions visées par ces couches de compositions différentes portent soit sur une amélioration de la résistance à la corrosion, soit sur des propriétés plus tribologiques comme l’amélioration de l’accroche de lubrifiants, à l’état solide ou à l’état liquide.

Il existe deux principaux types de traitements de conversion :

- Les films de conversion chimique

La réaction se produit naturellement entre un milieu aqueux contenant des sels des éléments réactifs. La réaction n’exige pas des températures élevées. On retrouve dans cette famille la phosphatation, déclinée principalement sur les aciers faiblement alliés. Elle permet de créer en surface une couche de
phosphate de Manganèse ou de Zinc suivant le sel utilisé qui limite la corrosion des aciers mais constitue
par ailleurs une excellente couche d’accrochage pour les lubrifiants liquides tels que les huiles, en
particulier pour des situations privilégiant la lubrification limite voire mixte. Les phosphatations peuvent
ingégalement être utilisées comme couche d’accrochage des lubrifiants solides tels que les vernis de
glissement.

- Les films de conversion électrochimiques [26, 27]

Réalisés en plongeant le composant, après dégraissage et décapage, dans une solution aqueuse acide, et
en le portant à un potentiel anodique. La réaction d’oxydation du métal avec l’oxygène qui se dégage à
l’anode donne une couche d’oxyde de quelques micromètres à quelques dizaines de micromètres très
adhérente et de dureté élevée. Cette solution permet de passiver la surface d’alliages légers
(Aluminium, Magnésium et Titane) par formation d’une sous couche dense imperméable, plus épaisse
que celle qui se formerait en contact avec l’air, ce qui permet de stabiliser le comportement en
corrosion du matériau. Lors de la formation de cette couche d’oxyde, un phénomène couplé de
formation / dissolution conduit à la formation d’une première partie de la couche (au contact du
substrat) dense et imperméable suivie d’une partie, en surface, caractérisée par la présence de
porosités ouvertes. L’opération qui consiste à fermer ces porosités s’appelle le colmatage. Le
rebouchage peut se faire pour des considérations d’aspect, avec des solutions colorées, ce qui permet
de faire varier la teinte des pièces. Pour des applications de contact, il est possible d’utiliser du PTFE
pour colmater ces porosités ce qui permet d’obtenir en outre un comportement lubrifiant pour la
couche de conversion formée.

3.1.3.4 La mise en œuvre des lubrifiants pâteux : les graisses

Les graisses sont utilisées lorsque la quantité de chaleur à évacuer est faible (faible vitesse de glissement
même sous forte charge ou vitesse moyenne mais avec charge modérée). Elles ont la particularité de
rester dans le contact même à l’arrêt. Elles sont utilisées dans les articulations, les paliers, les systèmes
câblerie ou les roulements. Le roulement étanche, que ce soit avec flasque métallique ou élastomère
(Figure 56) constitue probablement l’illustration la plus courante de contact graissé. Dans ce cas le
système d’étanchéité est suffisant pour confiner la graisse sur les contacts roulants, et le roulement
pourra être utilisé tel quel sans avoir la nécessité d’ajouter une étanchéité complémentaire.
Dans l'industrie, on parle beaucoup de l'incompatibilité des lubrifiants, et plus particulièrement des graisses. Le problème se pose par exemple lorsque l'on veut changer la graisse dans un mécanisme pour en utiliser une autre de meilleures performances ou tout simplement parce que l'on change de fournisseur. Si cette opération est réalisée sans précaution, le résultat peut être catastrophique en raison de l'incompatibilité de nombreuses graisses entre elles.

Le fabricant de roulements NSK a conduit une étude de compatibilité sur 10 sortes de graisses dans le Tableau 2 ci-dessous.

Tableau 2 : Tableau de compatibilité des graisses

<table>
<thead>
<tr>
<th>O compatible</th>
<th>~ douteux</th>
<th>X incompatible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexes d'Aluminium</td>
<td>Baryum</td>
<td>Calcium</td>
</tr>
<tr>
<td>Complexes d'Aluminium</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Baryum</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Calcium</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Hydroxyde de calcium</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Complexe de calcium</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Argile</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lithium</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Hydroxyde de lithium</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Complexe de lithium</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>Polyurée</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
3.1.3.5 Synoptique d’optimisation de la lubrification liquide

![Synoptique d’optimisation de la lubrification liquide](image)

3.1.3.6 La mise en œuvre des lubrifiants liquides

La première opération à assurer consiste à amener le lubrifiant vers le contact. Pour ce faire, il faut veiller à assurer un débit d’alimentation du contact au moins égal à celui nécessaire pour assurer le régime de lubrification souhaité. Si cette situation n’est pas assurée on parle alors de sous-alimentation du contact en lubrification. De manière générale, l’ordre de grandeur du débit nécessaire à la mise en place d’un contact lubrifié se situe autour du litre par heure, ce qui correspond à un goutte à goutte. Pour des durées de fonctionnement faible, il est possible de travailler sans récupération de l’huile (lubrification à huile perdue). Pour des raisons environnementales, ce mode d’aménée du lubrifiant est abandonnée au profil de recirculation d’huile soit à l’état liquide soit à l’état de brouillard d’huile avec quelques mg d’huile par litre d’air, ce qui est plus compatible avec le niveau des débits d’huile attendus en lubrification.

La mise en œuvre de la lubrification liquide ne suppose pas seulement d’amener de l’huile vers le contact mais également de vérifier que l’épaisseur visée de lubrifiant se trouve bien entre les 2 pièces. On rappelle que cette épaisseur de film d’huile va conditionner directement (cf. paragraphe 3.1.2.3) le
Lors de la mise en œuvre de la lubrification, le pilotage de l'épaisseur se fait de manière indirecte et s'appuie sur la courbe de Stribeck [21-23] qui révèle sur tout type de contact lubrifié que l'épaisseur de film d'huile est d'autant plus importante que le paramètre $\eta v/p$ est grand (Figure 58).

On constate sur l'exemple ci-dessus que les combinaisons de variables s'inscrivent sur une courbe maitresse pointant des valeurs de frottement voisine de 0.10 pour toutes les combinaisons de variables donnant les faibles valeurs de paramètre $\eta v/p$ tandis que les autres combinaisons conduisent à des frottements caractéristiques d’une plus importante épaisseur de film d’huile. Pour les faibles valeurs du paramètre $\eta v/p$ et donc d'épaisseur d'huile entre les pièces, le frottement est quasi indépendant des paramètres et s’apparente à un comportement de type frottement solide, ce qui est le cas car les molécules d’huile ne sont plus mobiles à l'état liquide mais solidaires de la surface de la pièce (cf. illustration a) de la Figure 53). Avec cette même huile mais présente en épaisseur plus importante entre les pièces (illustration b) de la Figure 53), on va observer un comportement fluide qui se matérialise en particulier par un coefficient de frottement croissant linéairement avec la vitesse comme le suggère le comportement viscoélastique du lubrifiant.

Le dimensionnement en lubrification consiste à ajuster ce groupement de paramètres (indépendamment du paramètre choisi) pour que le frottement visé soit atteint. La variable d’ajustement privilégiée est la viscosité de l’huile choisie. Compte tenu de l’allure de la courbe, la réduction du frottement ne répond pas à une logique simple car si la zone de fonctionnement est en zone de lubrification mixte il faut augmenter le paramètre $\eta v/p$. Inversement en film épais la réduction du frottement s’obtient en réduisant ce paramètre par exemple en utilisant une huile plus fluide.

D’autres paramètres sont influents mais ne figurent pas sur ce graphe. Ainsi si on modifie la rugosité d’un des éléments de contact, on constate que les points représentatifs des 2 types de rugosité s’organisent sur 2 courbes maitresses décalées l’une de l’autre (Figure 59).
Ces 2 courbes montrent qu'une action sur la rugosité peut s’avérer utile pour réduire le frottement, à condition de se trouver dans une zone intermédiaire de fonctionnement : la lubrification mixte. Par contre, en frottement limite ou en film épais, la rugosité est un paramètre peu influant.

Par ailleurs un changement de matériau (sur les pièces) ou d’huile peut entraîner une modification de la courbe de Striebeck mais cette fois-ci par pur effet d’homothétie. La modification est plus importante pour la lubrification limite et s’estompe avec l’augmentation de l’épaisseur de film d’huile (courbe b) de la Figure 59).

3.2 Recherche de solutions matériaux contre le grippage et l’usure adhésive

Ce paragraphe détaillle les matériaux destinés à avoir des actions bénéfiques sur l’usure adhérente et notamment contre le grippage.
3.2.1 Synoptique de résolution du problème de grippage et d’optimisation de l’usure adhésive

Pour limiter le grippage, on peut suivre le synoptique Figure 60.

Figure 60 : Synoptique de solutions sur le grippage
3.2.2 Les différents types de solutions matériels sur le grippage

Pour remédier à ce problème, d'une manière générale [3, 7], il faut bannir le contact direct entre les matériaux qui ont tendance à se souder l'un avec l'autre, et donc surtout entre matériaux identiques. Les 3 voies principales, quelquefois associées pour plus de fiabilité, sont les suivantes :

- L’interposition d’un film fluide entre les deux pièces pour éviter le contact entre les deux matériaux. Pour cette solution, il faut se référer au paragraphe lubrification par liquide tel que l’huile.
- Le choix de matériaux différents en vis-à-vis et non soudables. La Figure 61 ci-après indique la résistance au soudage des matériaux purs en vis-à-vis. Les combinaisons de matériaux résistants au grippage correspondent aux cases les plus foncées, qui malheureusement sont les plus rares.

![Figure 61 : Table de compatibilité des matériaux usure adhésive (Rabinowicz)](image)

Pour les alliages, il suffit de consulter les combinaisons avec les éléments majoritaires de l’alliage. Ainsi pour les alliages ou matériaux les plus classiques, on trouve les solutions antigrippage dans le Tableau 3 suivant :

<table>
<thead>
<tr>
<th>Tableau 3 : Solutions antigrippage classique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acier</td>
</tr>
<tr>
<td>Alliages de Titane</td>
</tr>
<tr>
<td>Alliage d’Aluminium</td>
</tr>
<tr>
<td>Chrome</td>
</tr>
<tr>
<td>Molybdène</td>
</tr>
<tr>
<td>Tungstène</td>
</tr>
<tr>
<td>Argent</td>
</tr>
</tbody>
</table>
• La limitation du produit \(f \times p \times v \) pour se situer en deçà des valeurs conduisant à la soudure. Ces valeurs seuils sont données dans le Tableau 1 en paragraphe 2.5.5 dédié aux phénomènes thermiques dans le contact.

3.2.3 **La mise en œuvre de solutions antigrippage : Les revêtements métalliques**

Une des solutions proposées pour limiter le grippage consiste à modifier les matériaux en contact de manière à avoir 2 matériaux qui ne se soudent pas entre eux. Sa mise en œuvre la plus simple consiste à revêtir une des 2 pièces d’une fine couche continue (quelques micromètres peuvent suffire) d’un matériau non soudable avec le matériau de la pièce antagoniste.

Les procédés permettant de réaliser cette opération rentrent dans la famille des métallisations [28] et plusieurs méthodes permettent de déposer des métaux sur la surface des pièces à traiter.

• La métallisation par immersion consiste à plonger le composant à revêtir dans un bain du métal à déposer. Les métaux le plus souvent déposés par cette méthode sont des métaux à basse température de fusion. Les plus classiques sont destinés à lutter contre la corrosion (Ex : Etamage, Galvanisation ou Aluminiage). Cette technique est néanmoins utilisée dans une application tribologique : la fabrication des revêtements de type régule utilisés dans les coussinets pour limiter les conséquences de grippage en cas de faiblesse de la lubrification par huile (débit faible ou viscosité faible à cause d’un échauffement).

• La métallisation chimique consiste à déposer une couche d’un métal sur un substrat à l’aide d’une réaction d’échange ou de réduction d’un ion métallique du métal à déposer issu d’une solution saline de ce métal. Les plus utilisés sont le nickelage, ou le chromage (pour des applications anticorrosion ou de durcissement de surface). Pour la réduction du grippage par adhésion, l’argenture peut être utilisée face à des pièces en acier. Le revêtement Nickel-phosphore, en imbriquant des particules de PTFE, permet d’obtenir un coefficient de frottement faible (environ 0.05). Ce coefficient reste constant en cas d’usure de la couche.

• Les revêtements électrochimiques sont réalisés en couplant la précipitation d’un sel métallique en solution dans une solution aqueuse avec le passage d’un courant. Les revêtements obtenus visent des objectifs de décoration ou de résistance à la corrosion (Cr, Ni, Co, Fe, Cu, Zn, Al, Au, Rh) ou des propriétés anti-adhésion (Cd, Sn, AG, Pb, Au). De plus, les revêtements de chrome dur ont longtemps été parmi les dépôts utilisés pour répondre à des sollicitations de contact (tenue aux contraintes mécaniques, abaissement du frottement, maintien du film de lubrifiant...) et de résistance à l’usure. Actuellement, ce type de revêtement est sous surveillance en raison de la présence dans les électrolytes de \(Cr^{+6} \) qui sont des éléments très toxiques [29].
3.3 Les solutions matériaux sur l’abrasion

L’abrasion est occasionnée par la présence de formes aigues avec des duretés nettement plus importantes que sur l’élément en vis-à-vis. En conséquence l’analyse de solution matériau consiste à limiter ces 2 aspects : soit les formes aigües, soit les différences de dureté.

3.3.1 Synoptique d’optimisation de l’usure abrasive

Pour limiter l’abrasion, on pourra utiliser le synoptique Figure 62.

Figure 62 : Synoptique d’optimisation de l’abrasion
3.3.2 Les différentes solutions pour optimiser l’usure par abrasion

Les solutions se classent en 2 familles :

- Diminuer les effets d’arrêtes [3,7] : la grande surface cinématique doit être plus rigide, plus dure et plus lisse que la petite surface cinématique. Pour rappel, la petite surface cinématique est la surface dont les points sont en contact permanent avec la matière (pièce du haut sur les schémas de la Figure 63 ci-dessous). En revanche, les points de la grande surface cinématique sont en contacts intermittents avec la matière de l’autre surface (pièce du bas sur les schémas de la Figure 63 ci-dessous).

Figure 63 : Réduction de rugosité de la pièce la plus rigide

Dans les schémas de droite, le métal plus dur peut s’incruster dans le matériau plus malléable et créer un effet d’arêtes qui favorisera l’usure abrasive. Sur les schémas de gauche, ces effets d’arêtes ont disparu en positionnant correctement le matériau le plus dur et en réduisant sa rugosité.

- Jouer sur le rapport de dureté :

3.3.3 La mise en œuvre des solutions anti abrasion : les traitements de diffusion

De ce fait, les traitements de diffusion sont largement utilisés pour améliorer la résistance à l’usure abrasive, et également renforcer le comportement en fatigue de contact en introduisant des contraintes résiduelles de compression (cf. paragraphe 3.4). Ils permettent d’associer de meilleures propriétés de surface en utilisant des matériaux de coût moins élevé, plus faciles à mettre en forme, donnant des propriétés volumiques de résilience ou de résistance bien adaptées. Des traitements thermiques après le traitement de diffusion peuvent encore améliorer les caractéristiques à cœur de l’alliage.

Les principaux traitements de diffusion font intervenir l’ajout d’éléments légers tels que le Carbone (Cémentation), le Bore (Boruration), l’Azote (Nituration ionique ou gazeuse) ou bien des combinaisons (Carbonitruration ou Nitrocarbururation, Sulfocarbonitruration). L’utilisation de ce type d’éléments légers permet, d’une part, d’atteindre une forte profondeur affectée, apte à intégrer l’étendue du champ des contraintes de contact mais également la possibilité de réaliser des composés stables, finement dispersés, tels que des nitrures ou des carburés, qui vont permettre d’obtenir le durcissement. Il est possible également d’enrichir le matériau avec des éléments plus volumineux tels que le chrome (chromisation). L’effet attendu est alors une meilleure tenue à l’oxydation en température (grâce à l’enrichissement en chrome) plutôt qu’un effet de durcissement.

3.4 Recherche de solution matériaux contre l’usure par fissuration

3.4.1 Synoptique d’optimisation de l’usure par fissuration

L’endommagement par fissure (paragraphe 2.3.3.2) résulte de l’existence au sein du ou des matériaux en contact de variations de sollicitations mécaniques trop importantes en intensité ou bien trop nombreuses (variations de contraintes ou nombre de cycles trop grand). Les solutions basées sur un changement des sollicitations mécaniques imposées au matériau sont détaillées dans le synoptique en Figure 65. Nous présentons en figure ci-après les solutions permettant de réduire l’usure par fissuration en agissant sur une modification de la tolérance du matériau à ce type d’endommagement.
3.4.2 Les différentes solutions pour optimiser l’usure par fissuration

Les diverses solutions ont pour dénominateur commun de modifier la résistance à la fissuration du matériau dans la zone où les contraintes de contact sont les plus dommageables. Du fait que l’intensité des contraintes de contact décroît avec la profondeur, les solutions de durcissement classiques (changement de matériau ou durcissement de l’ensemble de la pièce par traitement thermique) peuvent être complétées par des solutions locales où seule une profondeur de moins d’un millimètre est affectée, soit par un changement de composition soit par un changement de structure (traitement de surface). Les 3 grandes voies [26] sont :

- les traitements mécaniques de surface pour lesquels il n’y a pas de changement de composition et pas de chauffage de la surface. La transformation est principalement mécanique et est obtenue par écrouissage. Ces traitements aboutissent en général à une modification microgéométrique. Ils ont été cités en 2.4.2 et seront détaillés en paragraphe 3.4.3.
- Les traitements thermiques superficiels. Ces traitements s’apparent au traitement thermique dans la masse mais avec un processus de chauffage localisé.
• Les traitements thermochimiques (avec changement de composition en surface (par diffusion)). Ces traitements permettent de durcir le matériau par diffusion d’un élément (paragraphe 3.3.3) généralement interstitiel, le carbone et/ou l’azote sont les plus courants.

Remarque : Les solutions de types revêtements sont généralement déconseillées pour réduire la tendance à la fissuration. En effet, le caractère discontinu du revêtement (changement brutal de composition par dépôt) crée toujours une faiblesse mécanique au niveau de l’interface entre revêtement et substrat, et ce malgré toutes les précautions de préparation de surface que l’on peut prendre. Cette faiblesse, si elle se conjugue à l’existence de contraintes mécaniques significatives à cet endroit, peut entrainer un amorçage de fissure.

3.4.3 Mise en œuvre des traitements mécaniques de surface

Les traitements mécaniques de surface [26, 31] ont pour objectif d’introduire dans les matériaux, par déformation plastique, des contraintes internes (ou résiduelles) opposées à celles qui seront appliquées lors de l’utilisation de manière à ce que l’endommagement du matériau, somme des contraintes résiduelles et des contraintes appliquées, soit réduit. L’application de contraintes mécaniques à la surface d’une pièce peut être obtenue par diverses méthodes (illustrées en Figure 65 ci-après).

Figure 65 : Les différentes techniques de traitements mécaniques des surfaces

Galetage : Le principe consiste à faire rouler à la surface de la pièce un corps (rouleau généralement) de manière à plastifier la surface et introduire des contraintes de compression.

Martelage et grenaillage : Ces 2 procédés utilisent les impacts de corps hémisphériques (marteau pour le martelage et bille pour le grenaillage) pour former une juxtaposition de cratères qui sont des traces de plastification synonymes de la création de contraintes résiduelles. Le profil microgéométrique obtenu après ce type de traitement est très caractéristique (Figure 38). La problématique principale de ce type de procédé est de doser l’intensité du traitement car son niveau est difficilement contrôlable autrement que par retour d’expérience et/ou mesure à postériori des contraintes résiduelles internes. En effet, le jet de grenaillage sous un flux d’air comprimé nécessite un temps de maintien suffisant pour conduire à une juxtaposition de cratères garantissant l’uniformité du traitement, mais pas trop important sous réserve de mettre en péril la résistance du matériau en accumulant trop d’impacts au même endroit.

Traitement par choc laser : Trop souvent considéré comme une technique utilisant la thermique, ce procédé consiste à privilégier l’action de l’onde mécanique du pulse laser pour créer un cratère de plastification. Ce procédé, encore très couteux en raison de la source d’énergie utilisée, s’avère extrêmement commode pour contrôler la répartition des impacts car comme la source d’impact est unique, le procédé peut être facilement supervisé.
4 Etape 4 : Validation des performances tribologiques

Dans cette étape, l'objectif est de présenter les éléments essentiels à la recherche d'un processus de validation rapide du choix d'une solution potentielle. Ce processus de validation se situe généralement en continuité de l'étape 3 dédiée à l'identification de solutions potentielles et correspond à une situation où plusieurs solutions potentielles répondent au cahier des charges imposé. On va naturellement s'écarter significativement de l'implémentation de toutes ces solutions sur le mécanisme réel avec les conditions nominales de fonctionnement. En effet cette approche présente 2 défauts majeurs qui vont constituer des freins à une validation rapide de la solution :

- Géométrie compliquée des pièces réelles (long délai de fabrication et de mise au point de l'industrialisation de la solution)
- Durée de vie longue qui retarde l'issue de l'essai.

La démarche proposée vise à raccourcir ces 2 délais avec l'utilisation de pièces simples faciles et rapides à réaliser (éprouvettes d’essai) ainsi que l’utilisation d’un appareillage [32] permettant de sévérer la sollicitation des matériaux afin d’avoir des informations plus rapides sur la durée de vie de chacune des solutions potentielles et le mode de défaillance associé.

4.1 Méthodes expérimentales pour reproduire le fonctionnement du contact

Il va de soi qu’une telle méthodologie demande de ne pas dénaturer le fonctionnement du contact. Les précautions à prendre sont les suivantes :

- Respect du type de contact : il est fondamental de respecter la nature du contact (ponctuel, linéique ou surfacique) mais par contre ses dimensions pourront être modifiées à condition de respecter des effets d’échelle permettant de conserver le niveau de pression du contact.
- Respect des matériaux : outre le fait d’utiliser les mêmes matériaux, compte tenu du fait que la tribologie fait intervenir la surface des pièces, il faudra être attentif à une parfaite représentativité de la surface des pièces c’est-à-dire utiliser une gamme de fabrication des éprouvettes la plus proche possible de celle qui sera retenue pour les pièces réelles. A minima les éprouvettes et pièces devront avoir les mêmes microgéométries (en amplitude et en orientation par rapport au mouvement relatif).
- Chargement du contact : le chargement des éprouvettes devra être ajusté en fonction de leur géométrie pour solliciter les éprouvettes avec le même niveau de pression que celui rencontré dans les pièces réelles.
- Le type de cinématique devra être impérativement conservé (roulement avec glissement, glissement alternatif ou glissement continu par exemple) et si possible les valeurs de vitesse devront être ajustées au plus proche des valeurs rencontrées dans l’application.
- Le respect de l’environnement est également incontournable en raison de la forte sensibilité du comportement tribologique.
Le respect de l’ensemble de ces précautions, doit permettre de garantir l’existence, à l’issue de l’essai sur tribomètre, d’un endommagement du contact du même type que celui observable sur les pièces réelles.
Le principe de sévérisation des conditions d’essais, indispensable pour aboutir à des durées d’essais plus courtes que la durée de fonctionnement réelle, est basé sur les aspects suivants :

- En priorité, il faut rechercher dans la phase de vie du contact les phases de fonctionnement avec les conditions les plus sévères et les privilégier pour les tests sévérisés. Par exemple, si le changement de freins sur un véhicule automobile intervient tous les 2 à 3 ans, la phase la plus sévère pour les freins correspond aux phases de freinage qui en les cumulant donne une durée de l’ordre de quelques heures seulement.
- En complément, il est souvent indispensable de compléter la démarche précédente car les durées obtenues restent encore trop longues pour un essai rapide. La démarche la plus classique consiste à accélérer l’usure en augmentant la pression ou la vitesse après vérification que ces modifications ne dénaturent pas le type de dégradation du contact mais modifient simplement son intensité. Dans ce cas, il est indispensable de vérifier, lorsque c’est possible, que le changement de paramètre d’essai n’engendre pas un changement du mode de défaillance qui pourrait s’avérer rédhibitoire pour la validité du test.

Les moyens d’essais tribométriques reposent en général sur des formes de pièces simples à fabriquer (Figure 66).

![Figure 66 : Différents types de tribomètres](image)

4.2 Mesure du coefficient de frottement

Les tribomètres utilisés pour la détermination du coefficient de frottement [33] représentatif d’une condition de fonctionnement donnée doivent naturellement présenter une grande souplesse à l’ensemble des paramètres détaillés en 4.1 :

- Plage de vitesse
- Plage d’effort
- Plage d’environnement
La Figure 67 ci-après présente notre moyen d’essai Supméca dédié au glissement continu (tribomètre pion disque). Sur ce moyen d’essai un capteur de force est positionné dans la direction tangentielle pour mesurer en continu, lors de l’essai, la force de frottement.

Figure 67 : Tribomètre pion disque Supméca avec en médailleon les épreuves utilisées

Le Tableau 4 ci-après présente le domaine de fonctionnement du tribomètre.

Tableau 4 : Domaine de fonctionnement du tribomètre pion disque

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Modalité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type de contact</td>
<td>Ponctuel, linéique ou surfacique</td>
</tr>
<tr>
<td>Chargement</td>
<td>15 à 500 N</td>
</tr>
<tr>
<td>Vitesse de glissement</td>
<td>0,01 à 15 m/s</td>
</tr>
<tr>
<td>Environnement</td>
<td>Liquide entre -30 et 130°C</td>
</tr>
<tr>
<td></td>
<td>Air entre 20 et 400°C</td>
</tr>
<tr>
<td></td>
<td>Gaz à 25°C</td>
</tr>
</tbody>
</table>
Même philosophie pour des moyens orientés sur le mouvement alternatif (basse fréquence et hautes fréquences) et pour des cinématiques de type roulement avec glissement.

4.3 Mesure de la perte de volume

La caractérisation de l’usure (perte de volume de chaque éprouvette) est généralement faite en fin d’essai seulement. En effet, ces pertes de volume sont souvent extrêmement faibles, ce qui nécessite des moyens métrologiques avec des exigences de mesure telles qu’elles sont incompatibles avec une mesure in situ. Le démontage des éprouvettes est souvent une exigence de mesure.

On distingue 2 techniques distinctes :

- La technique par pesée. Par comparaison des pesées avant essai et après essai, il est possible d’accéder à la perte de masse des pièces et, si la masse volumique est connue, d’en déduire la perte de volume.
- La métrologie dimensionnelle. Généralement, une mesure profilométrique traversant l’intégralité de la trace permet d’en caractériser la profondeur par comparaison (Figure 68) entre le niveau initial (bord de trace) et le niveau atteint après usure.

![Figure 68 : Principe de la profilométrie](image)
4.4 Mesure des températures

La température de contact est une des caractérisations tribologiques les plus difficiles à obtenir en raison de la faible accessibilité de l’endroit où on souhaite faire la mesure. Les seules mesures accessibles sont des mesures situées au voisinage du contact (Figure 69).

La mesure pyrométrique est une mesure optique réalisée à la surface de la pièce la plus étendue, et en arrière du contact. La principale difficulté de ce principe de mesure est la détermination de l’émissivité de la surface car celle-ci a subi le contact et présente donc des écarts par rapport à une surface brute d’usinage.

La mesure par thermocouple est rendue possible en perçant les pièces jusqu’au voisinage de la surface et en y logeant des thermocouples. Si une telle instrumentation est rapide à réaliser sur une pièce fixe, pour les pièces mobiles il faut avoir recours à des techniques lourdes pour extraire le signal (émetteurs, collecteurs mobiles,…). Par ailleurs, pour la grande surface cinématique (pièce du bas sur cet exemple), l’exploitation des résultats est compliquée par le caractère instationnaire de la mesure.

Figure 69 : Mesure au voisinage du contact
5 Références

REMERCIEMENTS

A tous les adhérents membres de la Commission Technique d’ARTEMA et plus particulièremen à ceux cités ci-après :

CMD TRANSMISSIONS
www.cmdgears.com

ETNA INDUSTRIE
www.etna-industrie.fr

LATTY INTERNATIONAL
www.latty.com

LISI AUTOMOTIVE
www.lisi-automotive.com

NTN-SNR ROULEMENTS
www.ntn-snr.com

PARKER HANNIFIN
PARKER HANNIFIN MANUFACTURING France
www.parkerfrance.fr

SMC France
www.smc.eu

A SupMéca

Particulièrement les étudiants de la promotion 2015
Mathilde TAFFOREAU- Gregory BARRAT

Et les étudiants de la promotion 2016
Houssam BELLA-Oscar MANCEAU

Et leurs professeurs encadrants :
MURIEL QUILLIEN
François ROBBE-VALLOIRE
Artema, syndicat des industriels de la Mécatronique, rassemble 150 entreprises qui conçoivent, produisent, commercialisent et assurent la maintenance des composants, solutions ou systèmes qu’elles fabriquent. Les adhérents sont des PME, ETI ou groupes internationaux des domaines suivants: Étanchéités ; Fixations ; Mécatronique ; Roulements et Guidages linéaires ; Transmissions Hydrauliques ; Transmissions et Automatismes Pneumatiques et Transmissions Mécaniques.

- + de 7,4 milliards d’euros de volume d’affaires dont 50% à l’export.
- 35 000 salariés dédiés.

Artema est membre de la FIM (Fédération des Industries Mécaniques) et des comités européens CETOP, EFI, EUROTRANS et EFBMA.

www.artema-france.org